Journal of Innovation in Applied Research (eISSN: 2581-4206)

Jounal of Innovation in Applied Research
(eISSN: 2581-4206)
Optimization of environmental remediation of heavy metals: kinetics and thermodynamic modeling
Environmental Biotechnology | Volume 5 (Issue 1&2)

Optimization of environmental remediation of heavy metals: kinetics and thermodynamic modeling

Emmanuel Agboeze, Okoro Ogbobe
Open Access   
Published : 17-Apr-2022

DOI: 10.51323/JIAR.5.1.2022.01-12

35
Views

116
Downloads

The kinetics and thermodynamics of biodegradable adsorbents prepared with kola nut testa were evaluated to remove Cu2+ and Pb2+ ions from an aqueous solution in the batch procedure. Results showed that the percentage removal of Pb2+was 89.982% for C-KNTR and 90.909% for Ch-KNTR while Cu2+ was 86.782% for C-KNTR and 83.973% for Ch-KNTR, respectively. Metal ion removal decreased with an increase in a concentration above 10 mg. Freundlich isotherm best described the uptake of metal ions with the new adsorbents.Maximum monolayer adsorption capacity (qmax) was (68.144 for C-KNTR-Pb2+, 59.09 for C-KNTR-Cu2+and 50.247 for Ch-KNTR-Pb2+, 65.186 Ch-KNTR-Cu2+) mg/g, respectively. Pseudo second order with (R2 ? 0.995-0.999) best described the kinetics, while Alovich, Avrami and Weber-Morris models suggest that multiple mechanisms were involved in the adsorption process. Negative values for ?Go and positive values of ?H o indicate spontaneity and endothermic nature of the adsorption process. In contrast, the positive value of ? S? indicates an increase in disorderliness at the solid-liquid interface during adsorption. Physisorption predominated in all the studied processes; hence, desorption efficiency examined follows the order H2O > HCl > CH3COOH.


            <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<article xlink="http://www.w3.org/1999/xlink" dtd-version="1.0" article-type="environmental-biotechnology" lang="en">
  <front>
    <journal-meta>
      <journal-id journal-id-type="publisher">JIAR</journal-id>
      <journal-id journal-id-type="nlm-ta">Journ of innovation in applied research</journal-id>
      <journal-title-group>
        <journal-title>Journal of Innovation in Applied Research</journal-title>
        <abbrev-journal-title abbrev-type="pubmed">Journ of innovation in applied research</abbrev-journal-title>
      </journal-title-group>
      <issn pub-type="ppub">2231-2196</issn>
      <issn pub-type="opub">0975-5241</issn>
      <publisher>
        <publisher-name>Radiance Research Academy</publisher-name>
      </publisher>
    </journal-meta>
    <article-meta>
      <article-id pub-id-type="publisher-id">66</article-id>
      <article-id pub-id-type="doi">10.51323/JIAR.5.1.2022.01-12</article-id>
      <article-id pub-id-type="doi-url"/>
      <article-categories>
        <subj-group subj-group-type="heading">
          <subject>Environmental Biotechnology</subject>
        </subj-group>
      </article-categories>
      <title-group>
        <article-title>Optimization of environmental remediation of heavy metals: kinetics and thermodynamic modeling&#13;
</article-title>
      </title-group>
      <contrib-group>
        <contrib contrib-type="author">
          <name>
            <surname>Agboeze</surname>
            <given-names>Emmanuel</given-names>
          </name>
        </contrib>
        <contrib contrib-type="author">
          <name>
            <surname>Ogbobe</surname>
            <given-names>Okoro</given-names>
          </name>
        </contrib>
      </contrib-group>
      <pub-date pub-type="ppub">
        <day>17</day>
        <month>04</month>
        <year>2022</year>
      </pub-date>
      <volume>5</volume>
      <issue/>
      <fpage>1</fpage>
      <lpage>12</lpage>
      <permissions>
        <license license-type="open-access" href="http://creativecommons.org/licenses/by/4.0/">
          <license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.</license-p>
        </license>
      </permissions>
      <abstract>
        <p>The kinetics and thermodynamics of biodegradable adsorbents prepared with kola nut testa were evaluated to remove Cu2+ and Pb2+ ions from an aqueous solution in the batch procedure. Results showed that the percentage removal of Pb2+was 89.982% for C-KNTR and 90.909% for Ch-KNTR while Cu2+ was 86.782% for C-KNTR and 83.973% for Ch-KNTR, respectively. Metal ion removal decreased with an increase in a concentration above 10 mg. Freundlich isotherm best described the uptake of metal ions with the new adsorbents.Maximum monolayer adsorption capacity (qmax) was (68.144 for C-KNTR-Pb2+, 59.09 for C-KNTR-Cu2+and 50.247 for Ch-KNTR-Pb2+, 65.186 Ch-KNTR-Cu2+) mg/g, respectively. Pseudo second order with (R2 ? 0.995-0.999) best described the kinetics, while Alovich, Avrami and Weber-Morris models suggest that multiple mechanisms were involved in the adsorption process. Negative values for ?Go and positive values of ?H o indicate spontaneity and endothermic nature of the adsorption process. In contrast, the positive value of ? S? indicates an increase in disorderliness at the solid-liquid interface during adsorption. Physisorption predominated in all the studied processes; hence, desorption efficiency examined follows the order H2O &gt; HCl &gt; CH3COOH.&#13;
</p>
      </abstract>
      <kwd-group>
        <kwd> Adsorption Kinetics</kwd>
        <kwd>Desorption</kwd>
        <kwd>Isotherms</kwd>
        <kwd> Ion Exchange Resin</kwd>
        <kwd> kola-nut testa</kwd>
        <kwd> Physisorption</kwd>
        <kwd>Thermodynamics</kwd>
      </kwd-group>
    </article-meta>
  </front>
</article>

            
  1. Agboeze, E., Uchechukwu, T. U., & ogbobe, O. (2020). Novel Strong And Weak Kola Nut (Cola-Sterculiaceae) Testa Cation Exchangers For The Remediation Of Polluted Water. Am. J. innov. res. appl. sci., 11(1), 13-15. doi:doi:Ref.2-ajira080620
  2. Agomuo, E. N., & Amadi, P. U. (2017). Accumulation and toxicological risk assessments of heavy metals of top soils from markets in Owerri, Imo state, Nigeria. Environmental nanotechnology, monitoring & management, 8, 121-126. doi:https://doi.org/10.1016/j.enmm.2017.07.001
  3. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 11. doi: https://doi.org/10.1155/2017/3039817
  4. Chatterjee, A., & Abraham, J. (2019). Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. Biotechnology letters, 41(3), 319-333. doi:https://doi.org/10.1007/s10529-019-02650-0
  5. Chaudhary, P., Beniwal, V., Kaur, R., Kumar, R., Kumar, A., & Chhokar, V. (2019, April 13). Efficacy of Aspergillus fumigatus MCC 1175 for Bioremediation of Tannery Wastewater. CLEAN–Soil, Air, Water, 47(6), 1900131. doi: https://doi.org/10.1002/clen.201900131
  6. Das, L., Das, P., Bhowal, A., & Bhattachariee, C. (2020). Treatment of malachite green dye containing solution using bio-degradable Sodium alginate/NaOH treated activated sugarcane baggsse charcoal beads: Batch, optimization using response surface methodology and continuous fixed bed column study. Journal of Environmental Management, 276, 111272. doi:https://doi.org/10.1016/j.jenvman.2020.111272
  7. Es-sahbany, H., Berradi, M., Nkhili, S., Hsissou, R., Allaoui, M., Loutfi, M., & El Youbi, M. S. (2019). Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. . Materials Today: Proceedings, 13, 866-875. doi:https://doi.org/10.1016/j.matpr.2019.04.050
  8. Freundlich, H. M. (1906). Over the adsorption in solution. J. Phys. Chem, 57(385471), 1100-1107.
  9. Gümü?, D. (2019). Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. International journal of phytoremediation, 21(6), 556-563. doi:https://doi.org/10.1080/15226514.2018.1537254
  10. Khalek, M. A., El Hosiny, F. I., Selim, K. A., & Osama, I. (2019). A novel continuous electroflotation cell design for industrial effluent treatment. . Sustainable Water Resources Management, 5(3), 457-466.
  11. Kolo, M. T., Khandaker, M. U., Amin, Y. M., Abdullah, W. H., Bradley, D. A., & Alzimami, K. S. (2018). Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fired cement factory in Nigeria. . Results in Physics, 11, 755-762. doi:https://doi.org/10.1016/j.rinp.2018.10.003
  12. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. . Sven. Vetenskapsakad. Handingarl, 24, 1-39., 1-39. Retrieved from https://ci.nii.ac.jp/naid/10016440244/#cit
  13. Langmuir, I. (1916, November 1). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295. doi:https://doi.org/10.1021/ja02268a002
  14. Lasheen, M. R., Ammar, N. S., & Ibrahim, H. S. (2012). Adsorption/desorption of Cd (II), Cu (II) and Pb (II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sciences, 14(2), 202-210. doi:https://doi.org/10.1016/j.solidstatesciences.2011.11.029
  15. Li, L. Y., Gong, X., & Abida, O. (2019). Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. . Waste Management, 87, 375-386., 87(375). doi:https://doi.org/10.1016/j.wasman.2019.02.019
  16. Li, X., Qiao, H., Wang, R., Li, F., & Li, X. (2018). Spatio-temporal data mining and modeling: distribution pattern and governance input efficiency of heavy metal emission in industrial wastewater, China. . Journal of Water and Climate Change,, 9(2), 307-321. doi:https://doi.org/10.2166/wcc.2018.132
  17. Li, Y., Zhu, X., Qi, X., Shu, B., Zhang, X. L., & Wang, H. (2020). Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag. Journal of Cleaner Production, 122428. doi:https://doi.org/10.1016/j.jclepro.2020.122428
  18. Njoku, K. L., Akinyede, O. R., & Obidi, O. F. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. . Scientific African, e00545. doi:https://doi.org/10.1016/j.sciaf.2020.e00545
  19. Okoli, C. P., Diagboya, P. N., Anigbogu, I. O., Olu-Owolabi, B. I., Adebowale, K. O., & a. (2017). Competitive biosorption of Pb (II) and Cd (II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environmental Earth Sciences, 76(1), 33. doi:10.1007/s12665-016-6368-9
  20. Olatunde, K. A., Sosanya, P. A., Bada, B. S., Ojekunle, Z. O., & Abdussalaam, S. A. (2020). Distribution and Ecological Risk Assessment of Heavy Metals in Soils around a Major Cement Factory, Ibese, Nigeria. . Scientific African, e00496. doi:https://doi.org/10.1016/j.sciaf.2020.e00496
  21. Oluwasola, H. O., Asegbeloyin, J. N., Ochonogor, A. E., Ani, J. U., Collins, U. I., & Ebube, E. O. (2019). Cadmium and Lead Adsorption Capacities of Nigerian Ultisol Soil of Tropics. Oriental Journal of Chemistry, 35(3), 1004-1012. Retrieved from www.orientjchem.org
  22. Qureshi, U. A., Hameed, B. H., & Ahmed, M. J. (2020). Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: A review. . Journal of Water Process Engineering, 38, 101380. doi:https://doi.org/10.1016/j.jwpe.2020.101380
  23. Rojas, J., Suarez, D., Moreno, A., Silva-Agredo, J., & Torres-Palma, R. A. (2019). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of crystal violet dye onto Shrimp-Waste in its raw, pyrolyzed material and activated charcoals. . Applied Sciences,, 9(24), 5337. doi:https://doi.org/10.3390/app9245337
  24. Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. (2015). Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. . Korean Journal of Chemical Engineering,, 32(5), 787-799. doi:DOI: 10.1007/s11814-015-0053-7
  25. Shen, J. L., Muhammad, Y., Zhang, N., Guo, X., Subhan, S., & Huang, F. (n.d.). Removal of Cu (II) Ions From simulated Wastewater Using Bagasse Pith Grafted polyacrylamide Copolymer. . Chemical Engineering Research and Design. doi:https://doi.org/10.1016/j.cherd.2020.09.012
  26. Shi, M., Min, X., Ke, Y., Lin, Z., Yang, Z., Wang, S., & Wei, Y. (2020). Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr) oxides. Science of The Total Environment, 141930. doi:https://doi.org/10.1016/j.scitotenv.2020.141930
  27. Sun, K., Jiang, J. C., & Xu, J. M. (2009). Chemical regeneration of exhausted granular activated carbon used in citric acid fermentation solution decoloration. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 28(4), 79-83. Retrieved from https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=172647
  28. Tang, X., Ran, G., Li, J., Zhang, Z., & Xiang, C. (2020). Extremely efficient and rapidly adsorb methylene blue using porous adsorbent prepared from waste paper: Kinetics and equilibrium studies. . Journal of Hazardous Materials, 402, 123579. doi:https://doi.org/10.1016/j.jhazmat.2020.123579
  29. Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim. . URSS, 12, 327-356. Retrieved from https://ci.nii.ac.jp/naid/20000744365/#cit
  30. Thakur, V., Sharma, E., Guleria, A., Sangar, S., & Singh, K. (2020). Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.02.756
  31. Torrik, E., Soleimani, M., & Ravanchi, M. T. (2019). Application of kinetic models for heavy metal adsorption in the single and multicomponent adsorption system. International Journal of Environmental Research, 13(5), 813-828. doi:https://doi.org/10.1007/s41742-019-00219-3
  32. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 89(2), 31-60. Retrieved from https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0013042
  33. Ys, H., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem, 34(5), 451-465.
  34. Yu, H., Pang, J., Ai, T., & Liu, L. (2016). Biosorption of Cu2+, Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium, kinetics, and thermodynamic studies. . Journal of the Taiwan Institute of Chemical Engineers, 62, 21-30. doi:https://doi.org/10.1016/j.jtice.2016.01.026
  35. Zeng, Z., Zheng, P., Da, K. L., Li, W., Dongdong, X., & Pan, C. (2020). The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: performance and mechanism. Journal of Hazardous Materials, 123767. doi:https://doi.org/10.1016/j.jhazmat.2020.123767
Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria
Aceh4d acehbola aceh4d slot online slot online, acehbola Agen Slot aceh4d acehbola, Toto Slot slot bet 400 slot gacor online Slot Online acehbola acehbola Aceh4d Slot Big Win lapak7d, toto slot scatter hitam Slot online Situs Slot, togel online scatter hitam scatter hitam scatter hitam Situs Bet 100 perak acehbola, situs slot online acehbola, slot online acehbola, Toto Togel aceh4d, slot toto Slot Gacor Slot Gacor Situs Bet 100 perak Scatter Hitam Parlay Bola Acehbola aceh4d aceh4d aceh4d, situs toto 4d aceh4d, situs togel Slot Gacor Toto4d Scatter hitam xx1toto xx1toto xx1toto acehbola, Slot Judi Bola xx1toto xx1toto aceh4d, slot bet 200 tus4d, slot online, bandar togel bacansports, situs bet 200 aceh4d, slot online, slot bet 100 aceh4d, slot toto acehbola, Link Togel ksr88