Investigation On Nanocomposite Polymer Gel Electrolyte Films and Their Nanofibers for Electrochemical Devices
46
Views
28
Downloads
Present work has been aimed to study the role of MWNT on the performance of a PVA based nanocomposite polymer gel electrolyte films and their nanofibers, namely, {(PVA:NH4SCN):MWNT} system. The films and fibers, prepared by solution cast method and electrospinning respectively have been characterized by structural, thermal, electrical and cyclic voltametry measurements. A relative examination of XRD of nanocomposite polymer electrolytes (NCPEs) systems based films and fiber mats show that fibers exhibit better amorphous behavior in contrast to film counterpart. DSC results on fibers show greater thermal stability in comparison to corresponding gel electrolyte films. Likewise Cyclic Voltammetric investigations on fibers mats have better electrochemical stability viz. ?1.6 volt. However, bulk conductivity data for NCPE fibers mats exhibit comparable ionic conductivity. All these results indicate fiber mats as an alternative to electrolyte films for application in electrochemical devices.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd"> <article xlink="http://www.w3.org/1999/xlink" dtd-version="1.0" article-type="nanotechnology" lang="en"> <front> <journal-meta> <journal-id journal-id-type="publisher">JIAR</journal-id> <journal-id journal-id-type="nlm-ta">Journ of innovation in applied research</journal-id> <journal-title-group> <journal-title>Journal of Innovation in Applied Research</journal-title> <abbrev-journal-title abbrev-type="pubmed">Journ of innovation in applied research</abbrev-journal-title> </journal-title-group> <issn pub-type="ppub">2231-2196</issn> <issn pub-type="opub">0975-5241</issn> <publisher> <publisher-name>Radiance Research Academy</publisher-name> </publisher> </journal-meta> <article-meta> <article-id pub-id-type="publisher-id">41</article-id> <article-id pub-id-type="doi">10.51323/JIAR.1.1.2018.1-10</article-id> <article-id pub-id-type="doi-url"/> <article-categories> <subj-group subj-group-type="heading"> <subject>Nanotechnology</subject> </subj-group> </article-categories> <title-group> <article-title>Investigation On Nanocomposite Polymer Gel Electrolyte Films and Their Nanofibers for Electrochemical Devices </article-title> </title-group> <contrib-group> <contrib contrib-type="author"> <name> <surname>Rai</surname> <given-names>Neelesh</given-names> </name> </contrib> </contrib-group> <pub-date pub-type="ppub"> <day>30</day> <month>10</month> <year>2018</year> </pub-date> <volume>1</volume> <issue/> <fpage>1</fpage> <lpage>10</lpage> <permissions> <license license-type="open-access" href="http://creativecommons.org/licenses/by/4.0/"> <license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.</license-p> </license> </permissions> <abstract> <p>Present work has been aimed to study the role of MWNT on the performance of a PVA based nanocomposite polymer gel electrolyte films and their nanofibers, namely, {(PVA:NH4SCN):MWNT} system. The films and fibers, prepared by solution cast method and electrospinning respectively have been characterized by structural, thermal, electrical and cyclic voltametry measurements. A relative examination of XRD of nanocomposite polymer electrolytes (NCPEs) systems based films and fiber mats show that fibers exhibit better amorphous behavior in contrast to film counterpart. DSC results on fibers show greater thermal stability in comparison to corresponding gel electrolyte films. Likewise Cyclic Voltammetric investigations on fibers mats have better electrochemical stability viz. ?1.6 volt. However, bulk conductivity data for NCPE fibers mats exhibit comparable ionic conductivity. All these results indicate fiber mats as an alternative to electrolyte films for application in electrochemical devices. </p> </abstract> <kwd-group> <kwd>Polymer gel electrolytes nanofibers</kwd> <kwd>X-ray diffraction </kwd> <kwd>Differential scanning calorimetry and conductivity</kwd> </kwd-group> </article-meta> </front> </article>
1. Adebahr, J., Byrne, N., Forsyth, M., MacFarlane, D. R., & Jacobsson, P. (2003). Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochimica Acta, 48, 2099-2113.
2. Agrawal, S. L., Singh, M., Dwivedi, M. M., Tripathi, M., & Pandey, K. (2009). Dielectric relaxation studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films. Journals of Materials Science, 44, 6060–6068.
3. Awadhia, A., & Agrawal, S. L. (2007). Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes. Solid State Ionics, 78, 951– 958.
4. Bhargav, P. B., Mohan, V. M., Sharma, A. K., & Rao, V. V. R. N. (2007). Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics, 13(6), 441–446.
5. Chandra, S., Sekhon, S. S., & Arora, N. (2000). PMMA based protonic polymer gel electrolytes. Ionics,
6, 112-119. 6. Colomban, P. (Ed.). (1992). Proton Conductors: Solid, Membrane and Gels-materials and Devices, Cambridge University Press, Cambridge.
7. Cullity, B. D. (Ed.). (1978). Elements of X-ray Diffraction. Addison Wesley Co., USA.
8. Kubota, N., Fujii, S., Tatsumoto, N., & Sano, T. (2002). Ionically conductive polymer gel electrolytes consisting of crosslinked methacrylonitrile and organic electrolyte. Journal of Applied Polymers Science, 83, 2655-2668.
9. Mukherjee, G. S., Shukla, N., Singh, R. K., & Mathur, G. N. (2004). Studies on the Properties of carboxymethylated Polyvinyl alcohol. J. Scientific and Industrial Research, 63, 596-602.
10. Owen, J. R. (1989). Super ionics solids and solid electrolyte recent trends; Lasker, A. L.; Chandra, S. (Eds.); New York, Academic Press, pp. 111-125.
11. Pandey, K., Dwivedi, M. M., Tripathi, M., Singh, M. & Agrawal, S. L. (2008). Structural, thermal and ion transport studies on nanocomposite polymer electrolyte{(PEO + SiO2): NH4SCN} system, Ionics 14, 515-527.
12. Saikia, D. & Kumar, A. (2004). Ionic conduction in P(VDF-HFP)/PVDF-(PC+DEC)- LiClO4 polymer gel electrolyte. Electrochim Acta, 49, 2581-2589.
13. Shukla, P. K., & Agrawal, S. L. (2000). Effect of PVAc Dispersal into PVA-NH4SCN Polymer Electrolyte. Ionics, 6, 312–320.
14. Suthanthiraraj, S. A., & Sheeba, D. J. (2007). Structural investigation on PEO-based polymer electrolytes dispersed with Al2O3 nanoparticles. Ionics, 13(6), 447–450.
15. Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded Starch/PVA Composites: Water Resistance, Thermal Properties, and Morphology. Journal of Elastomers and Plastics, 40, 303-312.