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ABSTRACT 

In this paper, Einstein’s Field equations for locally-Rotationally -

Symmetric Bianchi type –II space time in the presence of stiff fluid 

matter and variable cosmological term are considered. To obtain the 

exact solution of Non – linear differential equations, we assume time-

decaying cosmological term of the forms, Λ= α a ̇/a, where a being 

average scale factor, By using a special law of variation for Hubble’s 

parameter [Berman, M.S. (1983). Nuovo cimento, B 74,182], which 

yields a constant value of deceleration parameter.  

 

A detail study of Physical parameters is carried out. The nature of 

singularities is also discussed. 

 

 

INTRODUCTION 

Bianchi cosmological models in general relativity provide a framework for investigation of 

the evolution of the universe. Our Present cosmology is based on the Friedman-Robertson-

Walker (FRW) model and in this model, the universe is completely homogeneous and 

isotropic, which is in agreement with the observational evidences about the large scale 

structure of the universe. There are theoretical arguments [Chimento,L.P, Misner, C.W.] and 

recent observational data of the Cosmic Microwave Background (CMB) radiations which 

support the existence of an anisotropic phase that approaches an isotropic one by Land, K., et 

al. These experiments stimulates search for exact anisotropic solution of EFEs as 

cosmologically acceptable physical models for universe at least in its early stage of evolution 

of the universe. 

Bianchi Type-II space time has a fundamental role in constructing cosmological models 

suitable for describing the early stages of evolution of universe. Asseo, E., et al. emphasized 

the importance of Bianchi Type-II universe. Locally rotationally symmetric (LRS) Bianchi 

type-II space times have already been considered by a number of authors. Lorenz, D.et al. 

presented the exact solutions for LRS Bianchi II space time. Boutros, H., studied Bianchi 

type-II space time, with prefect fluid by a generating technique and also constructed LRS 

Bianchi type-II perfect fluid with an equation of state, which is function of time. Chakraborty 

S. had obtained solution of LRS Bianchi type-II with variable G and  . Shanthi, K.,  et al., 

studied the same model in Barber’s self creation theory of gravitation. Venkateswarlu, A., et 

al., found cosmological solutions for Bianchi-II stiff fluid models in electromagnetic field 

theory.  Coley,A. et al, studied LRS Bianchi Type-II in to fluid Bianchi cosmologies. Singh, 

C.P. et al , have studied Bianchi type-II models with constant declaration parameter. 

Recently Pradhan et al. have investigated Bianchi type-II cosmological models with decay 

law of   as   where a is a scale factor. Tiwari,R. et al. have studied isotropic and anisotropic 
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cosmological models by taking    where is the Hubble parameter, R is scale factor and m is a 

positive constant. The recent observations indicate that  while particle physics prediction for   

is greater than this value by a factor of order 10120.  This discrepancy is known as 

cosmological constant problem. The simplest way out of this problem is to consider a 

varying cosmological term, which decays from huge value at initial times to the small value 

observed in these  days in an expanding universe Bertolami, O., Ozer, K., Freese, K..,et al 

Chen and Wu. Several phenomenological models have been suggested by considering   as a 

function of time Corvalho, J.C. et al., Arbab A.I. Beesham, A. Vishwakarma R.G., Gasperini, 

M., Berman,M.S., Ozer,K. et al, Peebles and Ratra , Dussattar,A.B. et al, Garid et al, Pradhan 

et al.  Of the special interest is the ansätz   (where a is the scale factor of the Roberston-

Walker metric) by Chen and Wu , which has been modified by several authors: Abdel-

Rahman,A. , Corvalho,I. et al., Silveira,V. et al., Vishwakarma,R.G., However, not all 

vacumm decaying cosmological models predict acceleration. AI- Rawaf et al., and Overdin 

et al. proposed a cosmological model with a cosmological term of the form  , where a is the 

scale factor of the universe and m is a constant. The recent observational evidences for an 

accelerated state of the present universe, obtained from distant Supernovae Ia, Riess, A., et 

al, gave strong support to search for alternative cosmologies. Thus the state of affairs has 

stimulated the interest. In more general models containing an extra component describing 

dark energy, and simultaneously accounting for the present accelerated stage of the universe. 

In this paper, we consider EFEs for anisotropic LRS Bianchi type- II space time in the 

presence of stiff fluid  for two types of cosmologies (power law cosmology and exponential 

cosmology) with time-decaying cosmological term of the forms, Λ= α a ̇/a , By using a 

special law of variation for Hubble’s parameter proposed by Berman, M.S. to get an exact 

solutions EFEs. These  solutions represents an anisotropic Bianchi type II stiff fluid 

cosmological model with negative constant deceleration parameter which corresponds to the 

accelerated state of the present universe. 

 

THE METRIC AND FIELD EQUATIONS 

We Consider the LRS (Locally Rotationally Symmetric) Metric for anisotropic 

Bianchi Type II Space-time in the form, 

𝑑𝑠2 = 𝑔𝑖𝑗𝜃𝑖𝜃𝑗 ,    𝑔𝑖𝑗= diag (-1,1,1,1)     (1) 

where, the Cartan bases 𝜃𝑖 are given by, 

  𝜃0 = dt,  𝜃1 = S(t)ω1,   𝜃2 = R(t)ω2 ,  𝜃3 = R(t) ω3    (2) 

where, R(t) and S(t) are the functions of cosmic time t. The time-dependent 

differential one forms ωi are given by, 

ω1=dy+xdz,  ω2=dz,  ω3=dx    (3) 

For metric (1), The Spatial average scale factor a is given by, 

 a3 = (R2S)      (4) 

The Volume scale factor V is given by, 

V= a3        (5) 

Also we define the average Hubble’s parameter H as, 

𝐻 =  
1

3
(𝐻1 + 𝐻2 + 𝐻3)        (6)  
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where, 𝐻1 = 𝐻2=
�̇�

𝑅
, 𝐻3=

�̇�

𝑠
, are the directional Hubble’s factor in the directions of 

x,y,z respectively. Here and elsewhere dot denotes derivative with respect to 

cosmic time t.From equation (4)-(6), the average Hubble’s parameter may be 

generalized in anisotropic cosmological model as, 

H=  
1

3

�̇�

𝑉
      ⇒    

�̇�

𝑎
 = 

1

3
(2

�̇�

𝑅
+

�̇�

𝑠
)      (7) 

Einstein’s field equations for LRS-Bianchi type-II space time, 

𝑅𝑖𝑗 −
1

2
𝑅𝑘

𝑘𝑔𝑖𝑗 + Λ𝑔𝑖𝑗 =  −8Π 𝑇𝑖𝑗      (8) 

where, 𝑅𝑖𝑗, 𝑅𝑘
𝑘 , 𝑔𝑖𝑗 are Ricci tensor, Ricci Scalar, metric tensor and Λ is  cosmological 

constant here,  𝑇𝑖𝑗 is the energy momentum tensor of the cosmic matter given by, 

 𝑇𝑖𝑗= (ρ+p) ui u
j – p 𝑔𝑖𝑗       (9) 

where, ρ and p are energy density and pressure of the cosmic fluid and  ui is the fluid 

four velocity vector such that uiu
i =1 

We take the equation of state (EoS) as,  

  p=ωρ               (10) 

where, ω is a constant and 0 
 
ω 1. 

The metric (1) and the energy momentum tensor (9) co-moving  co-ordinates, the 

field equation (8) gives, 

 2
�̇�

𝑅

�̇�

𝑆
 + 

�̇�2

𝑅2 −
𝑆2

4𝑅4 = 8𝜋ρ + 𝛬                  (11) 

 2
�̈�

𝑅
+

�̇�2

𝑅2 −  
3𝑆2

4𝑅4 = −8𝜋𝑝 + 𝛬                                     (12) 

�̈�

𝑆
 + 

�̈�

𝑅
+

�̇�

𝑅

�̇�

𝑆
+

𝑆2

4𝑅4  = −8𝜋𝑝 + 𝛬                                  (13)  

   

The usual energy conservation equation is given by, 

𝑇𝑖,𝑗
𝑗

= 0 ,    yields, 

𝜌 ̇ + (𝜌 + 𝑝) (2
�̇�

𝑅
+

�̇�

𝑠
) =  −

�̇�

8𝜋
      (14) 

          Einstein equations (11)-(13) are a coupled system of highly non-linear differential equations. 

In order to obtain an exact solution, we assume a form for a matter content or relation 

between the metric functions. The solutions to the field equations may also be generated by 

applying the law of variation for Hubble’s parameter, initially proposed by Berman , M.S. 

for FRW models, which yields a constant value of the deceleration parameter. Berman et al, 

Johri V.B. et al, Singh,G.P. et al, Pradhan et al,  Reddy et al., Adhav et al. Singh et al and 

others have studied cosmological models with constant deceleration parameter. We obtain 

an exact solution of the Einstein’s field equations with the help of law of variation for 
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Hubble’s parameter, which represents an anisotropic cosmological model with negative 

constant deceleration parameter. 

 

SOLUTION OF THE FIELD EQUATIONS  

LRS Bianchi type-II space time that also yields a constant value of deceleration parameter 

according to the proposed law, the variation of Hubble’s parameter is given by[45], 

   

   H = 
𝑘

𝑎𝑚   (15) 

where, ( 𝑘 ≥ 0) and (m ≥ 0) are constants. 

The spatial average scale factor a is given by, 

   𝑎3= 𝑅2S      (16) 

from equation (15) and (16), we get, 

𝑅2S = (𝑚𝑘𝑡 + 𝑘1)
3

𝑚⁄  ,  m≠0      (17) 

𝑅2S =   𝑘2
3𝑒3𝑘𝑡  ,                  m=0      (18) 

where, 𝑘1and 𝑘2are constants of integration. 

The deceleration parameter 𝑞 is defined as, 

   𝑞 =  
− 𝑎�̈�

�̇�2           (19) 

Using equations (16) and (17) in equation (19), 

   𝑞 =
𝑚−1

𝑘𝑚
    , m≠0     (20) 

   𝑞  =   -1,    m=0     (21) 

Equation (20) shows that, the law (15) gives a constant value of deceleration parameter 

(m≠0). Equation (21) shows that the law (15) gives a negative constant value of deceleration 

parameter (m=0). 

The Proposed law (15), provides an alternative and straight forward approach to get the exact 

solutions of highly non-linear Einstein’s field equations for Bianchi Models in a very simple 

manner. We consider the case, when the space time is filled with stiff matter (ω =1). 

In case of Stiff-matter equation (11) and (13) gives, 

�̈�

𝑆
 + 

�̈�

𝑅
+

3�̇�

𝑅

�̇�

𝑆
+

�̇�2

𝑅2  = 2𝛬         (22) 

On integration, which gives, 

 𝑅2�̇� +  𝑅�̇�𝑆  =  ∫ 2𝛬 (𝑅2𝑆)𝑑𝑡 + h    (23) 

where h is he constant of integration. 

Now we solve the equation (23) for the scale factor R(t) and S(t) using equation (17) and 

(18) for all possible values of m in the following sections ; 
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3.1 Power Law Cosmology (m≠0)  

Using equation (17) into equation (23) we get , 

𝑅2�̇� +  𝑅�̇�𝑆  =  ∫ 2𝛬 (𝑚𝑘𝑡 + 𝑘1)
3

𝑚⁄  𝑑𝑡 + h     (24) 

Now we use the phenomenological decay law for Λ(t) of the form, 

   Λ=  
𝜶�̇�

𝒂
            (25) 

By using the equation (4),(17) & (25) into equation (24), we get, 

𝑅2�̇� +  𝑅�̇�𝑆  = 
   2𝛼𝑘𝑚 

3
 (𝑚𝑘𝑡 + 𝑘1)

3
𝑚⁄  + h   (26) 

which leads, 

RS = m1 exp[
2𝛼𝑘𝑚

3
𝑡 +  

𝑚ℎ

(𝑚−3)
(𝑚𝑘𝑡 + 𝑘1)

𝑚−3
𝑚⁄ ]   (27) 

    where, (m1 > 0) is a constant of integration and (m≠3). 

   Solving equation (17) and (27) we get, 

R(t)= 
1

m1
  (𝑚𝑘𝑡 + 𝑘1)

3
𝑚⁄  exp[

− 2𝛼𝑘𝑚

3
𝑡 −  

𝑚ℎ

(𝑚−3)
(𝑚𝑘𝑡 + 𝑘1)

𝑚−3
𝑚⁄ ]   (28) 

S(t)= 𝑚1
2(𝑚𝑘𝑡 + 𝑘1)

−3
𝑚⁄  exp[

4𝛼𝑘𝑚

3
𝑡 +  

2𝑚ℎ

(𝑚−3)
(𝑚𝑘𝑡 + 𝑘1)

𝑚−3
𝑚⁄ ]    (29) 

Now, the directional Hubble’s factors H1, H2 and H3 in the directions of x, y, z are given by, 

H1= H2 =  
�̇�

𝑅
 =     [

3𝑘

(𝑚𝑘𝑡+𝑘1)
 −

2𝛼𝑘𝑚

3
−  𝑚ℎ𝑘(𝑚𝑘𝑡 + 𝑘1)

−3
𝑚⁄ ]      (30) 

H3 = 
�̇�

𝑆
 =  [

−3𝑘

(𝑚𝑘𝑡+𝑘1)
+

4𝛼𝑘𝑚

3
+  2𝑚ℎ𝑘(𝑚𝑘𝑡 + 𝑘1)

−3
𝑚⁄ ]       (31) 

with average Hubble parameter H is given by, 

H  =   
1

3
(2

�̇�

𝑅
+

�̇�

𝑠
)      (32) 

H = 
𝑘

(𝑚𝑘𝑡+𝑘1)
      (33) 

The anisotropy parameter �̅� is defined as, 

�̅�  = 
1

3
 ∑ (

∆𝐻𝑖

𝐻
)

2
3
𝑖=1       (34) 

where ∆𝐻𝑖 =  𝐻𝑖 −  𝐻  [i=1,2,3] 

using equation (30), (31) & (33) into equation (34), we get, 

�̅�  = 0        (35) 

The expansion scalar 𝜃 is given by, 

𝜃 =3H = (2
�̇�

𝑅
+

�̇�

𝑠
)      (36) 

𝜃 =      
3𝑘

(𝑚𝑘𝑡+𝑘1)
      (37) 

The Shear scalar σ is defined as, 
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σ2 =  σ𝑖𝑗σ𝑖𝑗  =  
1

3
 (

�̇�

𝑅
−

�̇�

𝑠
)

2

    (38) 

σ =  
1

√3
[

6𝑘

(𝑚𝑘𝑡+𝑘1)
−  2𝛼𝑘𝑚 −  3𝑚ℎ𝑘(𝑚𝑘𝑡 + 𝑘1)

−3
𝑚⁄  ]  (39) 

Energy density 𝜌 is defines as, 

𝜌 = (𝑚𝑘𝑡 + 𝑘1)
−6

𝑚⁄ exp[
𝛼𝑘

8𝜋(𝑚𝑘𝑡+𝑘1)
]    (40) 

Isotropic pressure p is defined as, 

p = (𝑚𝑘𝑡 + 𝑘1)
−6

𝑚⁄ exp[
𝛼𝑘

8𝜋(𝑚𝑘𝑡+𝑘1)
]    (41) 

 

We observe that, the metric (1) [for m≠0] with R(t) and S(t) given by equation (28) and (29) 

represents an exact stiff fluid LRS – Bianchi type-II Cosmological model with negative 

constant deceleration parameter and time decaying positive cosmological term Λ(t). We 

observe that, this is an accelerating model of the universe. And at t = 
− 𝑘1

𝑚𝑘
 = 𝑡0 ,the spatial 

volume is zero. One of the scale factors  R(t) Vanishes while the other scale factor S(t) 

diverges at t = 𝑡0 , The model has the Cigar-type singularity at 𝑡0 . Directional Hubble’s 

factors H1 , H2 and H3 are infinite at t = 𝑡0,. For metric (1), the anisotropic parameter is zero. 

At Hubble parameter (H), Expansion Scalar (𝜃), Energy density (𝜌) & cosmic pressure (p) 

are infinite. Shear scalar (σ)is non-zero at t = 𝑡0. Also it is observed that, At t → ∞,the ratio 
σ

𝜃
  

does not tends to zero, which shows that the our model does not approaches isotropy at late 

time. The expansion scalar 𝜃 → 0 as t → ∞,indicates that the universe is expanding with 

increase of time and the rate of expansion decreases with increase of time. 

 

3.2 Exponential Cosmology (m=0) 

Using equation (18) into equation (23) we get, 

𝑅2�̇� +  𝑅�̇�𝑆  =  ∫ 2𝛬    (𝑘2
3𝑒3𝑘𝑡) 𝑑𝑡 + h      (42) 

Now we use the phenomenological decay law for Λ(t) of the form,   

         Λ=  
𝜶�̇�

𝒂
     ,     (43) 

By using the equation (4), (18) & (43) into equation (42) we get, 

 𝑅2�̇� +  𝑅�̇�𝑆  =  
2𝛼

3
     (𝑘2

3𝑒3𝑘𝑡)  + ℎ     (44) 

which leads, 

RS = exp {
2

3
𝛼𝑡 −  

ℎ

3𝑘𝑘2
3 𝑒−3𝑘𝑡  }    (45) 

 

from equation (18) and (44) we get, 

R(t) = 𝑘2
3 exp {(3𝑘 −

2

3
𝛼) 𝑡 +  

ℎ

3𝑘𝑘2
3 𝑒−3𝑘𝑡  }  (46) 
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S(t) = 𝑘2
3 exp {(

4

3
𝛼 − 3𝑘) 𝑡 −  

2ℎ

3𝑘𝑘2
3 𝑒−3𝑘𝑡  }  (47) 

Directional Hubble factors as, 

H1 = H2 = 
�̇�

𝑅
=       { 3𝑘 −

2𝛼

3𝑘2
−  

ℎ

𝑘2
3 𝑒−3𝑘𝑡  }   (48) 

H3 = 
�̇�

𝑆
 =  {−3𝑘 +

4𝛼

3𝑘2
+

2ℎ

𝑘2
3 𝑒−3𝑘𝑡  }   (49) 

Hubble’s parameter is, 

H = k,        (50) 

Expansion Scalar is, 

𝜃 = 3k ,       (51) 

Anisotropic parameter is, 

�̅�  = 0 ,       (52) 

Energy density is, 

𝜌 = 
1

𝑘2
3 𝑒−3𝑘𝑡       (53) 

Cosmic Pressure is, 

p = 
1

𝑘2
3 𝑒−3𝑘𝑡        (54) 

Shear Scalar is, 

σ = 
1

√3
[6𝑘 −

6𝑘

3𝑘2
−  3ℎ

1

𝑘2
3  𝑒−3𝑘𝑡  ]   (55) 

 

  5. Conclusion  

In this Paper, we observed that EFEs for LRS Bianchi type II Space time in the presence of 

stiff build with time decaying cosmological term of the form Λ ∽
�̇�

𝑎
 , The Solutions are 

obtained using special law of variation of Hubble’s parameter proposed by Berman [45] for 

anisotropic models that yields a constant value of deceleration parameter. The law in 

equation (15) provides an alternative and easy approach to get the exact solutions of the 

highly Non-linear Einstein field equations for Bianchi type models in a very simple manner. 

The nature of the singularities of the model has been clarified and explicit forms of scale 

factors have been obtained . It has been observed that the universe status expending at t = 
−𝑘

𝑚𝑘
 

for  m≠0 and t = 0 for m = 0. Therefore this model of the universe has a singular origin for 

m≠0 and Non-Singular origin for m = 0. 

The deceleration parameter q = -1 for m = 0, indicating the value of q leads to 
𝑑𝐻

𝑑𝑡
= 0, which 

implies the greatest value of Hubble’s parameter and fastest rate of expansion of the 

universe. Also, it is observed that the ratio of shear scalar and expansion scalar is non-zero 

for all values of t. Hence the universe remains anisotropic throughout the evolution. Thus the 

model represents a shearing, non-rotating and expanding universe. Anisotropic parameter is 
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zero for all value of m.  Therefore, at the time of evolution of the universe anisotropy is 

constant. Thus our model for LRS Bianchi type II universe in the presence of stiff fluid is 

compatible with the recent observations. 
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