
Gour and Waoo, Journal of Innovation in Applied Research (2021), 4: 06
https://doi.org/JIAR.4.1.2021.37-41

Received: 11 January 2021
Accepted: 21 January 2021
First Published: 31 January 2021

*Corresponding author: Akhilesh A
Waoo, Department of Computer
Science and IT, Faculty of Computer
Applications & Information
Technology and Sciences, AKS
University, Satna, 485001, Madhya
Pradesh, India
E-mail: akhileshwaoo@gmail.com

Additional information is available at
the end of the article

ORIGINAL RESEARCH
Implementing Fault Resilient Strategies in Cloud
Computing via Federated Learning Approach
Lokendra Gour and Akhilesh A Waoo*

Abstract: Faults are inevitable in a very large scale distributed computing system
such as cloud computing. The size of distributed computing is enlarging drastically
due to the advent of the Internet of things (IoT). Faults occur frequently at any
working node and cause the partial or complete failure of the cloud applications.
Implementing fault resilient systems and securing cloud systems have become key
challenging problems in recent years. A novel model with federated learning (FL) is
analyzed and proposed to deal with these challenges. Federated learning, a special
kind of distributed deep learning, works in collaboration with the distributed
computing machines. A Federated learning model can be deployed on multiple
clusters of computing nodes. One of the features of distributed computing is that it is
growing drastically towards horizontal and vertical directions. The Federated
learning model is deployed on both horizontal and vertical scaling. FL deployed with
distributed deep learning can identify, recognize, and resolve the faults to great
extent.

Keywords: Distributed Computing; Fault Resilience; Federated Learning; IoT; Cloud
Computing

1. Introduction
To reduce the adverse effects of faults, machine learning (ML) especially the federated learning
(FL) approach is deployed. Federated learning is a distributed and decentralized paradigm of
protocols. The Federated learning approach is well suited for a distributed system because
a set of worker machines (or nodes) can train the local models. Different chunks of datasets
are distributed among the worker nodes or third parties. Here sections of a dataset are not
shared by theworking computational nodes. Thus federated learning is also themost significant
model for achieving data privacy and data security in addition to fault tolerance. The existing FL
approaches highlight optimizing only one dimension of the target space.

The proposed methods can reduce communication costs and improve the efficiency of dis-
tributed computing. Federate deep learning (FDL) method minimizes the adverse effects with
an improved convergence rate. This approach utilizes a weighted aggregation for accuracy
improvement. FDL is capable to detect and diagnose the faults that occur frequently on end-
user devices as well as on the edge. FDL is a novel communication efficient FL approach. It
incorporates both synchronous and asynchronous arrangements.

Federated learning (FL) is a multi-modal machine learning system that trains the algorithm
among various distributed and decentralized edge devices that holds local datasets. The intel-
ligent device such as PDAs, smart-phones, and desktops or tablets system has been scaling
rapidly in recent years. Most of these devices are equipped with multiple sensors that allow
them to produce and consume a huge amount of information. Distributed computing hierar-
chy consists of cloud, edge, and end-user devices. End-user devices train the local models and
use local datasets.

End device and client’s behavioral heterogeneity become the key cause of fault inclusion in
cloud systems. The cloud system plays a major role in scaling big data.

Page 37 of 41

© 2021 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY-NC-ND) 4.0 license.

http://crossmark.crossref.org/dialog/?doi=JIAR.4.1.2021.37-41&domain=pdf&date_stamp=31-01-2021
akhileshwaoo@gmail.com
https://creativecommons.org/licenses/by/4.0/

Gour and Waoo, Journal of Innovation in Applied Research (2021), 4: 06
https://doi.org/JIAR.4.1.2021.37-41

1.1. Preliminaries
Federated learning models include hundreds of thousands of remotely distributed end devices.
These devices use their device-generated data or section of datasets provided by the parameter
server. All the participating devices get connectedwith a central server to obtain updatedmodel
parameters. In general, the principal objective of federated learning is typically to solve the
following:

min f (x) =
∑m

k=1 (pkFk(w))

where m is the total number of participating end devices and pk ≥ 0. The end devices’ objec-
tives are to calculate the gradients of local models. The stochastic gradient descent (SGD) is
most probably used algorithm in local devices. After aggregating the local gradients, federated
learning generates the global model parameters for obtaining the final inference.

2. Methodologies
To implement a federated learning strategy, initially, a deep algorithm is deployed on each par-
ticipating end device for the estimation of the local gradients of the loss function. FL models
are deployed on clusters of end devices. FL collaborates and coordinates each end device or
clusters of end devices with the help of parameter servers. The following algorithm establishes
the correspondence between the server and the client processes.

Amazon SageMaker framework is used to implement the proposed FDL model. Following
steps are carried out to accomplish the task.

Creating a notebook instance.
• Preparing the data for preprocessing.
• Training the proposed model with appropriate datasets.
• Deploying the model on designated cloud.
• Evaluating the proposed mode for measuring the performance.
•Monitoring the model’s performance and accuracy.

2.1. Simple distributed algorithm
process p1

var u IN init 0
ACK: Boolean init true
begin
~ACK ∧ REC (s)→ ACK := true; u := u+1
ACK→ send (t); ACK := false
end
process p2
var wait : Boolean init true
begin
~Wait→ send (s); wait := true
Wait ∧ REC (s)→Wait:= false
end
Here p1 is the state of the process at the end device and p2 is the state of the process outside

of the device i.e., at the cloud where the central servers are deployed.
The parameter or central server is deployed at the cloud layer to orchestrate and coordinate

the local machines at the end devices. The parameter server performs the task of aggregating
the local updates and upgrading the global model after receiving the updated local models.
Edge works as an intermediate layer between the cloud and end-devices. Edge acts almost
similar to the cloud, it performs the task of taking the output of end devices as input, applies
aggregation and classification if necessary, and finally transfers its intermediate output to the
cloud system for further processing if required. The participating end device uses local datasets
and local models for training the local datasets and thus reduces the occurrence of faults to a
great extent.

Page 38 of 41

Gour and Waoo, Journal of Innovation in Applied Research (2021), 4: 06
https://doi.org/JIAR.4.1.2021.37-41

2.2. Parallel / Distributed Processing Mechanism
In a cloud system, multiple processes are running simultaneously on servers distributed or scat-
tered across the globe. In parallel computing, a task or program is divided into multiple pro-
cesses. Each process is executed by the processor of the single-processor or multi-processor
system. Whenever multiple processes are executed simultaneously by the multi-processor sys-
tem, it is known as parallel processing.

Distributed computing is an extension of parallel computing in the sense that parallel
processing is performed on the processing units distributed geographically. In case parallel
processing is carried out in the cloud computing environment; the processing devices are dis-
tributed across the different locations most probably on servers of the data centers. Some
protocols must be followed in parallel processing. For example, in a system program like
UNIX/LINUX operating system environment a system routine known as the fork is called for
creating a new instance of a process.

RetVal = fork ();
if (RetVal == 0)
{
child ();
{
: //child process
: //starts running
: //on end device

}
}
else
{
if (RetVal == -1)
Display (child process creation failed);

else
: // parent/master process
: // starts running

: // at this point
}

2.3. Synchronization
A distributed system under the cloud environment suffers the practical problem of synchro-
nization among the processes and heterogeneous resources. A very common Lock and Unlock
mechanism are used in the proposed system to deal with the synchronization problem. Follow-
ing is the code for the lock and unlock procedure:

Lock (L)
{
While (L == 1)
{
No Operation:

}
Unlock (L)
{
L = 0; }

In this algorithm, L is the locking variable that works as an entry point. If L = 0, the entry is
open and when L = 1, the entry is closed. When a process on the participating end device needs
to access the shared data, it invokes a Lock (L) procedure. When the values of L becomes 0, Lock
(L} procedure sets its value to 1. An Unlock (L) procedure makes the value of L to 0 (reset).

Page 39 of 41

Gour and Waoo, Journal of Innovation in Applied Research (2021), 4: 06
https://doi.org/JIAR.4.1.2021.37-41

2.4. System Topology
System topology for federated with distributed learning consists of a graph G = (V, E), where
V =set of working nodes (or sequential processes) E=set of edges (bi/unidirectional commu-
nication channel or links). Figure 1 shows the graph of the proposed model. In the graph,
nodes represent heterogeneous edge or end devices and the edge represents the communica-
tion channel. The links between the nodes may be guided on unguided. In the context of cloud
computing nodes may also represent the groups or clusters of the end devices.

The proposed graph topology for the distributed federated learning approach deploys mul-
tiple edge (or end) devices like mobile phones, smart sensors, etc. The end device executes
the process and the communication among the processes is performed through the message
passing. Each edge device has its model with a local dataset. The end device performs the task
of calculation of local gradients of loss function based on localizing dataset. At the cloud end,
these gradients are aggregated and updated for optimizing the model.

3. Experimental Setups
Python programming language is primarily used for building the model and for statistical analy-
sis R language is deployed. Open source TensorFlow and PyCharm computational frameworks
have been used for building ML and DL models. AWS platforms, Amazon SageMaker, and the
AWSDeep Learning AMIs are implemented to build, train and deploy the proposedmodel. Ama-
zon SageMaker Studio has been implemented for development, training, deployment andmon-
itoring the proposed FDL approach. An open simulating platform, FLASH is also applied for
designing and implementing the proposed FL model.

Figure 1. A Graphof Edge Devices With Distributed Federated Learning

4. CONCLUSIONS AND FUTURE WORK
In the proposed model the participating edge device trains its model with a local dataset. These
local datasets are not sharable among the edge devices hence the system preserves the privacy-
sensitive personal data. Federated learning collaborates withmachine learning without central-
ized training of the data.

Federated learning poses some of the key problems which have to be resolved: one of the
problems is communication cost and the other one is the unreliability of the end devices that
need not necessarily participate in the FL process. The proposed line of work opens the options
for further research in direction of data security and privacy of personal data.

The existing FL systems are not preserving the heterogeneity of data and device hetero-
geneity. Heterogeneity reduces the convergence rate of FL. This is one of the core challenges in
designing the FL model.

Page 40 of 41

Gour and Waoo, Journal of Innovation in Applied Research (2021), 4: 06
https://doi.org/JIAR.4.1.2021.37-41

ACKNOWLEDGEMENTS
The authors would like to express special thanks to AKS
University, Satna (MP) for providing a computer lab,
infrastructure, technical personnel and all the facilities to
accomplish this research work. The authors would also like
to thank all those who helped us a lot in finalizing this
research project within the limited time frame.

Author details
Lokendra Gour
Akhilesh A Waoo
E-mail: akhileshwaoo@gmail.com
Department of Computer Science and IT, Faculty of
Computer Applications & Information Technology and
Sciences, AKS University, Satna, 485001, Madhya Pradesh,
India.

Citation information
Cite this article as: Implementing Fault Resilient Strategies
in Cloud Computing via Federated Learning Approach,
Lokendra Gour, & Akhilesh A Waoo, Journal of Innovation in
Applied Research (2021), 4: 06.

References
Alistarh, D., Allen-Zhu, Z., & Li, J. (2018). Byzantine

stochastic gradient descent. Advances in Neural
Information Processing Systems, 4613-4623.

Bagdasaryan, E., Veit, A., Yiqinghua, D., Estrin, V., &
Shmatikov. (2018).

Bekkerman, R., Bilenko, M., & Langford, J. (2011).
Cambridge University Press.

Bernstein, J., Wang, Y. X., Azizzadenesheli, K., Anandkumar,
& A. (2018). Signsgd: Compressed optimization for
non-convex problems. International Conference on
Machine Learning, 559-568.

Bernstein, J., Zhao, J., Azizzadenesheli, K., & Kumar, A. A.
(2019). signSGD with Majority Vote is Communication
Efficient and Fault Tolerant. 7th International
Conference on Learning Representations, ICLR.

Bijral, A. S., Sarwate, A. D., & Srebro, N. (2016).
Blanchard, P., Guerraoui, R., & Stainer, J. (2017). Machine

learning with adversaries: Byzantine tolerant gradient
descent. Advances in Neural Information Processing
Systems, 119-129.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., … Mcmahan, H. B. (2019).

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
Mcmahan, S. H. B., Patel, D., … Seth (2017). Practical
secure aggregation for privacy-preserving machine
learning. Proceedings of the (2017) ACM SIGSAC
Conference on Computer and Communications Security,
1175-1191.

Byzantine stochastic gradient descent. (n.d.). Advances in
Neural Information Processing Systems, 4613-4623.

Caldas, S., Wu, P., Li, T., Konečny, J., Mcma-Han, B., Smith,
V., & Talwalkar, A. (2018).

Calheiros, R. N., Ranjan, R., Rose, C. A. F. D., & Buyya, R.
(2009). CloudSim: A Novel Framework for Model and
Simulation of. Cloud Computing Infrastructures and
Services, 1-9.

Chaturapruek, S., John, C. D., e, C. R., & C. (2015).
Asynchronous stochastic convex optimization: the
noise is in the noise and sgd don’t care. Advances in
Neural Information Processing Systems, 1531-1539.

Chen, X. W., & Lin, X. (2014). Big data deep learning:
Challenges and perspectives. Application of deep belief
networks for opcode based, 2, 514-525.

Engelmann, C., Vallée, G. R., Naughton, T., & Scott, S. L.
(2009). Proactive fault tolerance using preemptive
migration. Proc. 17th Euromicro Int. Conf. Parallel,
Distrib. Network-Based Process, 252-257.

Hatcher, W. G., & Yua, W. (2018). Survey of Deep Learning:
Platforms, Applications, and Emerging Research Trends.

Hazan, E. (2016). (Vol. 2).
He, K., Zhang, X., Ren, S., & Jian, S. (2016). Deep residual

learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition,
770-778.

Kakade, S. M., Shwartz, S. S., & Tewari, A. (2012). (Vol. 13).
Kocher, D., & Hilda, A. K. J. (2017). An approach for fault

tolerance in cloud computing using a machine learning
technique. Int. J. Pure Appl. Math, 117(22), 345-351.

Li, M., Andersen, D., Park, J. W., Smola, A. J., Ahmed,
Josifovski, A., … Su, Y. B. (2014). Scaling distributed
machine learning with the parameter server.
Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14
(p. 583-598).

Malware detection. (n.d.). Proc. Int. Joint Conf. Neural Netw.
(IJCNN), 3901-3908.

Mcmahan, B., & Ramage, R. (2017). Federated learning:
Collaborative machine learning without centralized
training data. Google Research Blog, 3.

Mcmahan, D. R. B. (2017). Retrieved from
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html

Nielsen, M. (2018). Neural Networks and Deep Learning
(. D. Alistarh, Z. Allen-Zhu, , & J. Li, Eds.).

Patil, A., Shah, A., Gaikwad, S., Mishra, A., Kohli, S. S., &
Dhage, S. (2011). Fault Tolerance in Cluster Computing
System. Int. Conf. P2P, Parallel, Grid, 408-412.

Shwartz, S. S., & David, S. B. (2014). Cambridge University
Press.

Ujjwalkarn. (2016).
Yuan, Y., & K, J. (2015). A distributed anomaly detection

method of operation energy consumption using smart
meter data. Proc. Int. Conf. Intell. Inf. Hiding Multimedia
Signal Process. (IIH-MSP), 310-313.

Zhu, D., Jin, H., Y, Wu, Y., D, Chen, & W. (2017). DeepFlow:
Deep learning-based malware detection by mining
Android application for abnormal usage of sensitive
data. Proc. IEEE Symp, 438-443.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. International
Conference on Machine Learning, 928-936.

Page 41 of 41

akhileshwaoo@gmail.com
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

	Introduction
	Preliminaries

	Methodologies
	Simple distributed algorithm
	Parallel / Distributed Processing Mechanism
	Synchronization
	System Topology

	Experimental Setups
	CONCLUSIONS AND FUTURE WORK

