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Abstract: Genome-wide association studies (GWAS), which have been used in
human disease research for the past ten years, are now the de facto method for
finding new genes. While although there is ongoing discussion about how to make
the most of these studies and occasionally about how much value they actually add,
it is evident that many of the most compelling findings have come from large-scale
mega-consortia and/or meta-analyses that pool information from several studies
and tens of thousands of participants. Even though these studies are growing more
and more prevalent, statistical techniques have lagged behind. There are effective
meta-analysis techniques available, but even when they are used carefully and to
their full potential, some statistical problems persist. The GWAS meta-analysis
literature is comprehensively reviewed in this article, with a focus on methodology,
software choices, and methodologies that have been applied in actual investigations.
Using a case study, we highlight how various approaches differ from one another.
We also talk about some of the open questions and possible directions in the future.

Keywords: GWAS; Gene metaanalysis; PAST; QTL analysis; SNP

1.
2. Introduction
Here, we survey the striking scope of revelations that Genomic wide association studies (GWASs)
have worked with in population and complex-quality hereditary qualities, the science of sick-
nesses, and interpretation toward new therapeutics. In the early on segments, we give a foun-
dation to this background, sum up its degree and design, and return to the logical reasoning
for GWASs. We then audit general ends that can be drawn from GWAS revelations across many
attributes. We in this manner feature more unambiguous aftereffects of disclosures and tech-
niques on the way from GWAS to science and survey progress in three exemplar diseases,
namely type 2 diabetes, auto-immune diseases, and schizophrenia. We end the review with
various areas on the restrictions of current exploratory planswhat’s more, potential ways of
conquering these and an expectation onthe eventual fate of GWASs for human characteristics.

GWAS Meta analysis and methods
Candidate gene association studies have been generally used to study Hereditary defence-

lessness to complex diseases, including cancer (1). Critics of quality investigations have high-
lighted non-replication of results, misleading positives, inadequate sample sizes, and restricted
earlier information on naturally pertinent up-and-comer genes (2). These worries have incited
the utilization of efficient audits, particularly meta-investigations of different studies, to limit
misleading positive affiliations and evaluate the believability of findings (Ioannidis JP 2006 et al).
In recent, genome wide association studies (GWAS) have incredibly sped up the speed of dis-
closure and found numerous clever hereditary affiliations that were not expected by the qual-
ity approach (3,4). Associations found by GWAS bring up unexpected issues, especially on the
grounds that noticed impacts are ordinarily very small (5). Besides, the implicated SNPs address
markers that require further examination to distinguish causal variants (6), although this might
turn out to be to a lesser degree an issue as strategies for fine mapping affiliations get to the
next level.
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To assist the immense measure of data from both candidate gene and GWAS of malignant
growth, the the Centers for Disease Control and Prevention’s (CDC) Office of General Well-
being Genomics and the Public Disease Establishment’s Division of Malignant growth Control
and Populace Sciences sent off the Disease GAMAdb in2010 (7). This persistently refreshed
data set indexes distributed GWAS and meta-investigations and pooled examinations that have
assessed relationship of hereditary polymorphisms and malignant growth risk since January 1,
2000. Disease GAMAdb assembles on a distributed informational index by Dong et al (Dong LM
2008), which incorporatedmeta-examinations and pooled investigations of hereditary polymor-
phisms, and disease risk distributed. Relationship in the data set distributed after that date have
been distinguished utilizing the Human Genome the study of disease transmission (Tremen-
dous) Guide database (8) and the Public Human Genome Exploration Establishment (NHGRI)
GWAS catalog (9). The Habitats for Infectious prevention and Avoidance’s Enormous Guide
is a consistently refreshed information base in HuGE (10). The NHGRI GWAS index extricates
information from GWAS publications. Hereditary affiliations with malignant growth are chosen
from these two data sets for curation in the Disease GAMAdb. Information depicting the asso-
ciation(s) — including concentrate on populace, minor allele frequencies, and impact sizes —
are physically separated from each article and went into the Malignant growth GAMAdb. The
ongoing investigation depends on the information that were remembered forMalignant growth
GAMAdb as of February 26, 2011.

Our analysis considered the extent to which associations reported in meta analyses and
GWAS overlapped. When both types of studies reported associations with the same variant,
we called the overlap direct. When they reported associations with variants separated by less
than 1million base pairs, we called the overlap indirect. In an additional analysis, we also exam-
ined noteworthy associations, which we defined as those with false-positive report probabilities
(FPRP) r0.2, a stringent threshold suggested by Wacholder et al,12 and used in the analysis by
Dong et al.8 We calculated FPRPs at two levels of prior probability and at two levels of associa-
tion (OR 1.5 and OR 1.2). As in the analysis by Dong et al,8 we chose to evaluate the associations
using a low-prior probability of 0.001 (expected for a candidate gene) and a very low-prior prob-
ability of 0.000001 (expected for a random SNP). An association was considered noteworthy if
it passed the FPRP threshold in one or more of these four categories.

We identified 5131 gene-variant associations with incident cancer from 386 meta-analyses
and pooled analyses published after the review by Dong et al review. We excluded 3828 (74.6%)
associations because their reported P-values were ≥0.05; 1026 more were excluded

for reasons. After applying all exclusion criteria, we found 277 significant associations; the
review by Dong et al included 98 significant associations. Twenty-six (7.4%) of these were also
found in meta-analyses published since the paper by Dong et al. Thus, there were 349 unique
variant-cancer associations in all, involving 264 genes (76withmore than one associated variant)
and spanning 25 different cancer types. The largest number of candidate gene associations was
found for breast cancer (n=80) followed by prostate cancer (n=53). Significant associations from
meta-analyses and pooled analyses of candidate genes are listed in Supplementary Table 1.

Abbreviations: ALL, adult lymphoblastic leukemia; GWAS, genome-wide association stud-
ies; MA, meta-analyses or pooled analyses; MCL, myeloid cell leukemia; NHL, non Hodgkin lym-
phoma.

a - Total significant associations reported in previous systematic review of meta-analyses
(Donget al8) and meta-analyses and pooled data of individual studies published from 20
March2008 through 26 February 2011. Meta-analyses were defined as those of candidate
genestudies. Significance threshold was 0.05.

b - FromGWAS catalog. Excludes variants that were not reported. GWAS withmeta-analyses
included were considered GWAS. Significance threshold was 1_10_5.

c - Some variants may be linked to one another due to proximity. Associations with combi-
nations

of two ormore variants were considered unique, even if listed standalone variants were also
reported.

d - Intergenic regions used if no gene provided by paper or associated with variant.
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Table 1. umber of significant associations (in variants and genes) reported in candidate
gene meta-analysis and pooled analysis and GWAS, by cancer site.

MA a GWAS b

Cancer Site Variants c Genes d Variants c Genes d

Bladder 15 14 10 10
Blood related 1 1
Breast 80 59 36 30
Cervical 4 4
Colorectal 30 23 17 14
Endometrial 2 1
Esophageal 9 9 4 4
Gastric 21 17 2 2
Genitourinary 2 2
Glioma 18 13 9 8
Head and Neck 14 11
Hepatocellular 8 4 4 6
Hodgkin lymphoma 4 3
Laryngeal 2 2
Leukemia 4 4 32 27
Lung 32 23 25 22
Meningioma 1 1
Myeloprolifrative 1 1
Nasopharyngeal 4 3 6 6
Neuroblastoma 5 3
Non-hodgkin lymphoma 10 8 2 2
Oral 1 1
Ovarian 14 12 10 10
Pancreatic 21 21
Prostate 53 40 56 35
Renal Cell 3 3
Skin 20 8 8 7
Testicular 12 10
Thyroid 2 2
Upper aero-digestive tract 2 2
Upper aero-digestive tract and lungs 1 1
Urothelial 1 1

Total 349 264 269 223
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Complications
Nowadays, GWASmeta-analysis is frequently employed and, in general, has been successful

in identifying genetic effects that were not identified in individual research. But there are still
certain obstacles and unresolved methodological problems.

2.1. Genotype data cleaning
It is imperative that all data sets go through extensive standard GWAS data cleaning procedures
before meta-analysis, such as removing ”poor” SNPs and samples using genotyping call rates,
tests of Hardy-Weinberg equilibrium (HWE), etc. (11). The significance of having consistent data
cleaning procedures and standards across all data sets is not totally obvious. Can using various
genotype call rate cutoffs in various data sets lead to issues, for instance? To our knowledge, this
has not been systematically investigated. There are three strategies to deal with HWE in genetic
association studies for specific SNPs: include all studies regardless of the HWE tests (12), sensi-
tivity analysis is being performed to confirm different genetic influences in subgroups (13-16),
and eliminating research with statistically significant HWE divergenceand eliminating research
with statistically significant HWE divergence (13,17). Recent large consortium meta-analyses
have made an effort to utilise uniform HWE cutoffs across trials, which is unquestionably the
most secure method.

Furthermore, it is unclear whether implementing data cleansing procedures that compare
various data sets is required or desirable. It is usual practise to search throughdata sets for SNPs
with drastically varying allele frequencies and remove thembefore combining because the same
SNP assay can react differently on several chips, or even on the same chip in different batches.
However, there will be SNPs for which there are ”real” differences in allele frequency if the data
sets are from various ethnic groups. It is unclear how to distinguish between the artefacts and
the actual differences, making it challenging to suggest the best cleaning method. Similar prob-
lems arise with HWE testing when data sets are merged (as was mentioned above), but it is
fairly obvious that HWE tests on combined data sets would be too conservative. These difficul-
ties are especially crucial when there are disparate phenotypic distributions between research
(or, equivalently, different case : control ratios).

3. Imputation
Direct SNP-by-SNP meta-analysis is not practicable when studies are genotyped on multiple
chips since there may be very little overlap in the SNP sets. For instance, only roughly 100K
or 20% of the SNPs in the Illumina 550K SNP set and the Affymetrix 500K SNP set match. The
typical approach to this issue is to impute the genotypes of all SNPs in all samples, and there
are several effective ways for doing so (18). Imputed genotypes have a little bit greater error
rates and variances than non-imputed genotypes, which is a challenge that hasn’t been prop-
erly addressed in the literature. Imputation error rates are often quite low when done carefully.
However, error rates may be higher in regions of the genome with poor SNP coverage or in eth-
nic groups that are underrepresented in the reference data set for imputation (usually HapMap
or 1000 genomes). This problem, like data cleaning above, can be very serious if the distri-
bution of phenotypes varies between research. A disparity between case and control variances
can result from two studies with different case:control ratios, one of which is genotyped and the
other imputed for a specific SNP. This can lead to false positive results. In contrast, imputation
will produce ”genotypes” if one chip has extremely low coverage of a particular location, which
actually conveys very little information. In this situation, the meta-analysis may produce falsely
negative results since it is averaging in unhelpful data sets. This issue might have a regionally-
smoothed meta-analysis as a solution, but as far as we know, no such techniques exist. Gener-
ally speaking, it is always a good idea to examine the data quality of replication results that are
mostly dependent on imputed data.
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4. Choice of genetic models
The fundamental association test in GWAS analysis might be based on a comparison of allele
frequencies or on different statistical contrasts of genotype frequencies, such as an additive
model, a dominant model, etc. The additive model is typically employed because it is the same
model that is used for each SNP (19). In a meta-analysis, it is ideal to utilise the same model
across all studies, but in post hoc combinations of analyses, this may not always be feasible. As
far as we know, no one has investigated how such modification in the association model affects
meta-analysis. Even though it would not match a Gaussian random effects model, it would
undoubtedly create some degree of effect heterogeneity that would, at the very least, violate a
fixed effects model. Similar problems develop when other variables or population stratification
control strategies are applied in various research.

5. Between-study heterogeneity
As was already said, between-study heterogeneity in GWAS meta-analysis should probably be
regarded as the norm. It is crucial to identify and document this variability because it can pro-
vide crucial biological insights, such as variations in the genetic regulation of male and female
recombination. According to accepted wisdom in the statistical literature, the random effects
model is preferable to the fixed effects model when heterogeneity is present or even likely. We
argue that this may not be the best strategy for GWAS, because (i) often only a small number
of research are integrated, which results in an estimate of the heterogeneity that is not precise
(ii) A Gaussian random effects model typically does not fit the form of the heterogeneity. While
we do advocate using forest plots as a key heuristic tool for identifying and comprehending
heterogeneity, we also indicate that future research on random or mixed-effects models that
offer a better fit to GWAS data may enhance analysis. We could fit a model that explicitly has
different fixed male and female effects in our recombination scenario as we know that males
and females are likely to be different.

PAST: Pathway Association Studies Tools
Finding the parts of the genome that affect complex features in maize and other crops has

become highly popular because to genome-wide association studies (GWAS) (20-22). F statis-
tics are typically used to evaluate thousands of single nucleotide polymorphism (SNP) markers.
a p-value for the SNP-trait correlation and a connection with the trait. Individual connections
between markers and traits that are significant enough to meet the false discovery rate (FDR,
the percentage of then, a more thorough examination is conducted to identify false positives
among all significant data for some level. Indications about the genetic foundation of the trait
and suggestions for future improvements. Because the FDR threshold in GWAS may be as low
as divided by the total number of SNPs being analysed, many real relationships may go unde-
tected. The FDR threshold may not be met in complicated, polygenic traits where genes that
have tiny eects on a trait, particularly if the association’s eect value is modified by the environ-
ment. Additionally, the positive alleles of other genes in the same pathwaymust also be present
for an allele to be useful to be detected because many alleles of genes may only express them-
selves in particular genetic backgrounds (22). There’s a chance that the small sample size of the
GWAS panel prevents these allelic combinations from existing. Thus, the strict FDR thresholds
and the insufficient numbers of high-frequency polymorphisms present inmost panels limit the
statistical power of GWAS for discovering genes of minor effect.

The combined effects of several genes that are grouped together based on their similar bio-
logical function are the subject ofmetabolic pathway analysis (23-25). This is a potential strategy
that can support GWAS by providing hints about the genetic underpinnings of a trait. Pathway
analysis and association mapping have been used in medical research to discover biological
insights missed when focusing on only one or a small number of genes that have highly sig-
nificant associations with a trait of interest (23,26-28). These methods were initially developed
to study differences in gene expression data in human disease studies (Subramanian et. al
2005). Studies on both plants and animals have just recently started to apply pathway analysis
(29-30). Additionally, enormous data sets generated by other high-throughput techniques like
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RNA sequencing, proteomics, and metabolomics can be interpreted using biologically relevant
pathways.

In recent years, the genetic basis of complex characteristics in plants has been studied using
GWAS-based metabolic pathway analysis as a discovery technique. Aflatoxin build up (31), corn
ear worm resistance (32), and oil production (33) in maize were all studied using a pathway-
based methodology. By combining GWAS and metabolic circuit analysis, all genetic sequences
are taken into account. Irrespective of their magnitude, and collectively they may highlight
which sequences are lead to systems that improve crops and that demand additional research
and manipulation, instance as in the case of gene editing. Even though combined GWAS and
pathway analyses were very effective in identifying related pathways, the studies were time-
consuming and labor-intensive because the analysis tools were created in a mix of R, Perl, and
Bash, and the results of one analysis had to be manually fed into the next. There was a dearth
of a single, unified, and user-friendly instrument to carry out this pathway analysis.

The Pathway Association Study Tool (PAST) was created to make GWAS-based metabolic
pathway analysis simpler and more effective. Although PAST was created for use with maize,
it can also be applied to other species. Regardless of their strength or relevance, it tracks all
relationships between SNP markers and traits. Based on linkage disequilibrium (LD) data, PAST
divides SNPs into linkage blocks and selects a tagSNP from each block. The features of the tag
SNP, such as the allele effect, R2, and p-value of the original SNP-trait relationship discovered
through the GWAS analysis, are then transferred to the gene(s) within a user-defined distance of
the tagSNPs using PAST. The enrichment score (ES) and p-value for each pathway are calculated
by PAST using the gene eect values. PAST is simple to use as a standalone R script, an online tool,
or a downloaded R Shiny application. It takes as input TASSEL (Bradbury et. al 2007) files pro-
duced as output from General Linear or Mixed Linear Models (GLM and MLM) in table format,
or files from any association analysis that have been similarly formatted, along with genomic
annotations in GFF format and a metabolic pathways file. One line should represent each gene
in the metabolic pathways file, and the columns should list the pathway ID, pathway name, and
gene ID.

Figure 1. The process through which PAST processes genome-wide association study
(GWAS) output data to identify metabolic pathways significantly associated with a trait of
interest

QTL analysis and GWAS of plant breeding
One of the second-most important oilseed crops, rapeseed (Brassica napus L., genome

AACC, 2n = 38) is primarily produced for vegetable oil and proteinmeal around theworld (34-37).
The ever-increasing demand from people makes it difficult to feed the growing population, and
the generation of biofuels improves food security globally (38-39). Grain output is anticipated
to rise by up to 50% by 2025 in order to meet the increased demand for food worldwide (40).
Therefore, new plant varieties with superior agronomic features will continuously need to be
produced in order to meet this growing need. Stress-inducing response, yield, and yield-related
features are just a few examples of several agronomic variables that are governed by numerous
genes and strongly influenced by the environment (41). The separation and isolation of complex
qualities into a single chromosome locus, as well as their characterisation for each quantitative
trait locus (QTL), are therefore imperatively noticed in order to develop the real mechanism of
agronomic traits.

With the rapid advancement of sequencing technology and bioinformatics tools, QTL anal-
ysis has emerged as a highly significant, precise, and effective genotyping method that makes
use of molecular markers (such as single nucleotide polymorphisms, or SNPs), allowing for the
strict control of complex genomic traits (42). The 60 K illumines Infinium SNP array population
for B. napus may be successfully translated to a gene-based, low-cost, and high-throughput
genotype-based screening technique for gene mapping (43). This technique is incredibly effec-
tive at mapping the QTLs at a narrow-range genomic level to control the intended trait, and it
may also be the source of supply markers for the required traits (44). The quick developments
between the Brassica and Arabidopsis species have been extraordinarily sparked by a prior
study. These findings demonstrated the identification of 12 genes and the eight quantitative
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trait nucleotides (QTNs) that underlie seed weight. Additionally, BnAP2, a single gene-specific
marker, was found (45).

An effective method for the association mapping of QTL traits is linkage disequilibrium (LD)
mapping, also known as association mapping. LD mapping shows the statistical relationship
between the genetic markers and phenotypes within the natural populations. The successful
and promising method of partitioning complex features is known as genome-wide association
studies (GWAS) (46-47). Avena sativa (48), Sorghum bicolor (49), Hordeum vulgare (50), Triticum
aestivum (51), Glycine max (52), Oryza sativa (53), Zea mays (54), Arachis hypogaea (55), and
Brassica napus (56) are only a few of the crop varieties for which GWAS has lately shown promise
(57).

The application of QTL/GWAS approaches to the analysis of these crops will spread quickly to
include cereal crops. As a result, the current study primarily focuses on the traits of the rapeseed
QTL, which serve as a useful model for subsequent research. The current analysis also offers a
benchmark summary of the most recent research, with a focus on rapeseed QTLs that suggest
a key role in upcoming breeding plans. This work also emphasises the thorough information
regarding single-locus and multi-locus GWAS techniques, which can increase the robustness of
GWAS for complex genetic characteristics.

6. Conclusion
Researchers must be aware of the most effective techniques for carrying out that meta-analysis
as the GWAS literature moves away from artificial ”replication” and toward themore statistically
optimal direct combining of all available data in a meta-analysis framework. Although most
research now employ sound procedures, there is still opportunity for improvement in many of
the previously covered specifics. Planning research in a coordinated approach from the start
would be ideal for addressingmany of the potential improvements, but that is not always possi-
ble. For post hoc pairings of studies that may have considerable variation in chip, research pop-
ulation, environmental exposures, association tests, etc., better approaches are still required.
Looking even further forward, it is necessary to revisit all of the difficulties raised above in light
of the impending publication in journals throughout the field of meta-analyses of SNP data pro-
duced from sequencing studies.
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