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Abstract: The alkaline phosphatase (ALP) enzyme is encoded by the phoD gene
reported majorly in bacteria. In the present study, we investigated variation in the
phoD gene abundance, and the relationship between phoD gene abundance, ALP
enzyme activity and available P under different farming practice (organic vs
conventional), crop species (chickpea, mustard, soybean and maize) and their growth
stages (pre-vegetation, vegetative, flowering, maturation and post-harvest). The
gPCR analysis revealed variation in total bacterial and phoD gene copy number
(copies g~'dws), ranging from 1.40 x 10° t0 9.16 x 10'% and 1.72 x 10° to 1.43 x 107,
respectively. The farming practices suggested significant effect with increased activity
of ALP, and abundance of phoD and 16S rRNA genes in organic farming than the
conventional one. The 16S rRNA and phoD gene abundance varied significantly along
different growth stages of crops in the order: flowering > maturation > vegetative >
post-harvest > pre-vegetation stages with maximum in maize and lowest in soybean
in both the farming practice. In conclusion, farming practices, crop types and crop
growth stages influenced soil available P and significantly affected ALP activity by
regulating phoD bacterial population in agroecosystem.

Keywords: phoD gene copy number; alkaline phosphatase activity; available P; farming
practices; crops

1. Introduction

Plant metabolic activities require phosphorus (P) as an indispensable element that plays a vital
role in maintaining the soil fertility as well as crop productivity. In soil, abundant P is present,
mainly in two forms as organic and inorganic P (Brady & Weil, 2007). However, in soil solution
microbes and plants utilize P as inorganic orthophosphate (HPO4?~ or H.PO, ™). To enhance
crop productivity, both mineral and organic P fertilizers are used in agroecosystems. Soon after
application some amount of inorganic P is readily taken up by the microbes and plants whereas
the unused phosphorous isimmobilized which leads to the accumulation of P in soil (Richardson,
2001). Since phosphorous is the main limiting macronutrient in agricultural soil, many bacteria
play an indispensable role in P-cycle to solubilize insoluble inorganic P (Pi) by producing organic
acids, and mineralizing the organic form of P (Po) by releasing extracellular enzymes like acid and
alkaline phosphatases (ALP) (Ragot et al., 2015). Researches have well acknowledged that acid
phosphatase is produced mainly by plants, fungi and bacteria whereas, alkaline phosphatase is
excreted by soil microbes mainly by bacteria (Nannipieri, Giagnoni, Landi, & Renella, 2011). The
activity of phosphatase is generally higher in rhizosphere soil with increased microbial activity as
compared to bulk soil (Fraser et al., 2017). It is also reported that the organic matter application
in the soil increases the ALP activity, as a result, concentration of available P is increased (Mandal
et al., 2007). There are some reports that the production and activity of alkaline phosphatase
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enzyme correlated negatively with available P in soil (Chen et al., 2019a; Fraser et al., 2017; Long
et al., 2018). According to Apel et al. (2007) the Pho regulon has been found mostly in bacteria,
and consist of set of genes that are useful to synthesize and exudate phosphatase enzymes
comprising alkaline phosphatase. As a segment of Pho regulon, alkaline phosphatase enzyme
is encoded by 3 different genes (homologous): phoD (Sakurai et al., 2008), phoX (Wu et al., 2007),
and phoA (Zappa et al., 2001) . The bacteria harbouring phoD genes are abundant among the
different environments predominantly in the soil while phoX and phoA gene harboring bacteria
are present in aquatic ecosystems (Hu et al., 2018). Previous studies showed that phoD gene is
the most frequently present ALP gene in the terrestrial environment and has been used as an
effective functional marker to study the relationship between ALP activity and available phos-
phorous (Ragot et al., 2016), and the abundance of ALP gene inhabiting the soil (Fraser et al.,
2015a;b).

Several studies reported that the abundance of phoD gene containing bacterial community
is affected by various environmental factors and agricultural management practices (Neal et al.,
2017), soil pH (Ragot et al., 2016), organic matter (Chen et al., 2017), mineral fertilizer (Chen et
al., 2017; Hu et al., 2018), cover crops (Hallama et al., 2022). A positive correlation was found
between phoD gene abundance and ALP activity in response to chemical P fertilizer and manure
application in soil but this correlation was not significant (Fraser et al., 2015a;b). Moreover,
increased activity of ALP enzyme and abundance of phoD gene was reported in relation to long-
term addition of organically amended soil (composted bean cake) as compared to chemically
treated soil (Luo et al., 2017). Besides, it was reported that the effect of the addition of P (phos-
phate and phytate) on the total and ALP gene (phoD) harboring bacterial populations inhabiting
the rhizosphere microsites (root tip and mature zone) of ryegrass. The qPCR of phoD, phoX and
16S rRNA gene showed increased abundance in root tip microsites amended with phytate as
compared to phosphate (Lagos et al., 2016). Chen et al. (2019a) studied the effect of long-term
mineral-P inputs in continuous maize cropping. The study showed the negative correlation of
alkaline phosphatase enzyme with soil P availability and positive correlation with phoD gene
abundance.

In the tropical agro-ecosystems of countries like India, there are very few studies available
on the activity of soil ALP enzyme. Mandal et al. (2007) conducted a field experiment to study
the long-term effect of NPK fertilizer and farmyard manure on microbial biomass C, N, phos-
phatase (alkaline/acid) and dehydrogenase in soil. In another study, the effect of combined and
individual input of various organic supplements and chemical P fertilizer was evaluated on the
alkaline phosphatase activity in maize cropping (Garg et al., 2008). Saha et al. (2008) studied the
effects of continuous treatment of manure and chemical fertilizer on the enzymatic activities
involved in mineralization of carbon, nitrogen and phosphorus. Bhat et al. (2017) compared the
biochemical activity in soil under long-term organic and conventional farming systems related
to P-availability in vertisols of Central India grown with soybean and wheat. The study con-
cludes that organic farming soil support increased biological activity. These studies limit the
information on changes in microbial population lined to P-mineralization. Literature survey
suggests that there are very few studies carried out on alkaline phosphatase encoding phoD
gene abundance and most of the studies have been performed in temperate agroecosystems.
It is therefore inevitable to understand the changes in phoD gene containing bacterial popu-
lation and their relation with available P in tropical agroecosystem for sustainable agriculture.
Most of the researches have restricted primarily on the activity of alkaline phosphatase enzyme
in the diverse environment. Our understanding of bacterial phoD gene abundance, ALP activ-
ity, available P and their relationship under the influence of different crop species and fertilizer
treatment in tropical agroecosystem is poorly understood and require further study.

In the present study, we hypothesized that different farming practices, crop species and crop
growth stages can regulate the P availability in soil and influence phoD gene abundance and the
soil ALP activity. The present study aimed to (1) determine the abundance of the phoD and 16S
rRNA genes (2) study the variation in ALP activity and available P content, and (3) investigate the
relationship between P-availability, ALP activity and phoD gene abundance in a tropical agro-
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ecosystem soils managed with different farming practices and crop species at different growth
stages of the crops.

2. Materials and methods

2.1. Study site

The study was conducted for consecutive two years (2017-2019) at the Dagmagpur agricultural
farm in the district of Mirzapur, Eastern Uttar Pradesh, India (83°34'E, 25°09'N), 80 m above
mean sea level. The soil at the site is Alfisol with a silty sandy texture (32% sand, 64% silt and 4%
clay). The climate of this area is seasonally tropical monsoonal and average annual precipitation
of 849.9 mm. The average temperature (minimum-maximum) varies from 8°C (January) to 42°C
(June). The agricultural farm was managed by the farmer and the site has been used for intensive
agriculture practices for a long time (=30 years).

2.2. Experimental design

For the current study, two agricultural farms/fields having different farming practices were cho-
sen: one field was treated with compost (organic farming) and the other with mineral fertilizers
(conventional farming). The experimental design for sample collection consists of a random-
ized complete block design with three blocks at each site (5x4 m each with 1 m gap) and a
treatment combination of 4 crops x 2 farming practices (total 24 blocks). The conventional and
organic farming plots were separated by 100 m distance to avoid edge effects. In the conven-
tional field, as per standard farming practice, mineral fertilizers, NPK (120,40 and 60 kg ha™*
for Rabi crops and 20, 40 and 60 kg ha™! for Kharif crops) was applied once both during Rabi
and Kharif cropping as a basal dose. The organic farming field was treated with compost which
was used as organic supplement and comprised of cattle dung and crop residues prepared by
NADEP (Narayan Deorao Pandharipande) technique (Chandra et al., 2007). The ripe compost
was distributed manually (at the rate of 15 tonnes ha—') and ploughed to incorporate up to 15
c¢m depth before Rabi and Kharif cropping. Any other supplement was not added except for
diluted cow urine (1:50; cow urine: water ratio) as the source of nitrogen (Singh et al., 2012).
To ensure comparability under both the farming system the cultivation practices (soil prepara-
tion, sowing of seed, and irrigation) were managed uniformly. The Rabi cropping extends from
November to March and Kharif from July to October. The seed sowing rate is depicted in Table
S1. Irrigation was done as per the standard norms i.e. before flowering and at the time of grain
formation for chickpea, mustard and maize, and before the emergence of plant and during pod
formation for the soybean crop. The Rabi crops comprised Chickpea (Cicer arietinum L. var Pusa-
256) and mustard (Brassica campestris var. T-151) and Kharif crop includes Soybean (Glycine max
var.PS-1225) and maize (Zea mays var. Ganga ll). Pesticides/ fungicides were not applied in both
experimental fields, and weeds were removed manually. Conventional tillage was performed
and ploughed up to depth of 10-15 cm under both the farming practices.

2.3. Soil sampling

The experimental plots for each crop in different farming practices (organic vs conventional)
comprised of three blocks and from each block, soil samples in triplicate were sampled at dif-
ferent time intervals of cultivation period i.e. vegetative, flowering, maturation including pre-
vegetation and post-harvest stage. Rhizosphere soil samples were collected from the vegetative,
flowering and maturation stage of the all test crops. Three plants from each plot of four crops
(chickpea, mustard, soybean and maize) were uprooted and soil adhering roots were shaken
gently to dislodge the soil clumps in a plastic bag and bulk soil samples were collected at pre-
vegetation and post-harvest stage from 0-10 cm depth using a soil corer (5 cm diameter) and
carried to the laboratory within 12 hours of sampling. The soil samples were sieved with a2 mm
sieve to remove plant debris and stone. The samples (pooled) were separated into two parts:
one kept (4°C) for soil alkaline phosphatase (ALP) enzyme activity and the other (at -20°C) for
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molecular study (qPCR). All the measurements were carried out in triplicate for two consecutive
years.

2.4. Soil variables and microbial biomass

Soil pH was determined by using a pH meter. Soil characteristic parameters such as texture,
water holding capacity (WHC) and bulk density were determined by the standard method as
described by Bhardwaj et al. (2020). Soil organic carbon (SOC) was estimated as per Walkley et
al. (1947) and total nitrogen (TN) is measured by the micro Kjeldahl method (Jackson et al., 1958).
Total P was analyzed by the method described by Allen et al. (1986). Triacid mixture (HClOq,
HNOs, and H2SO4 at 1:5:1) was used to digest the soil, and total P was analyzed spectrophoto-
metrically using protocol based on ammonium molybdate-stannous chloride. Soil available P
content was estimated as per Olsen et al. (1954). MBC (microbial biomass carbon), MBN (micro-
bial biomass nitrogen) and MBP (microbial biomass phosphorus) were measured as per stan-
dard protocol based on chloroform fumigation extraction method.

2.5. Crop biomass

To measure crop biomass, plants were collected at the vegetative, flowering and maturation
stages of each test crop plantin three replicates and cleaned with water to remove the adhered
soil. The root and shoot of these crop plants were segregated and dried constantly in the oven
(at 80°C) and measured to determine crop (root and shoot) biomass in g plant™* on an oven
dry-weight basis (Wang et al., 2017).

2.6. Alkaline phosphatase (ALP) enzyme activity assay

Potential ALP activity of soil samples was determined as per the method described by Tabatabai
and Bremner (1969). The soil samples (1g) in triplicate were incubated (1 hour at 37 °C) with 1 ml
modified universal buffer and para-nitrophenol phosphate as substrate at pH 11. Samples were
filtered (Whatman 42 filter paper) after 1 hour of incubation and the synthesis of p-nitrophenol
(p-NP) was measured using spectrophotometer (at 420 nm). The values were presented as ymol
of p-NP g~ 'soil h™1,

2.7. Soil DNA extraction, quantification of phoD gene and 16S rRNA gene copy number
(abundance)

Genomic DNA was extracted from soil (0.5 g) in triplicate by Fast DNA Spin Kit (MP Biomedicals,
Ohio, USA) using a bead beater (FastDNAprep, MP Bio, USA) following manufacturer’s protocol.
The concentration and purity of DNA was determined using Nanodrop 2000 spectrophotometer
(Thermo Fisher Scientific Inc., USA).

The abundance of bacterial phoD gene and 16S rRNA was performed by gqPCR using iCycler
iQ5 thermocycler (Bio-Rad). Gene copy number (phoD gene and 16S rRNA gene) was quantified
using a specific set of primer (phoD gene: ALPS-F730; ALPS-R1101; 765 rRNA: Eub 338F, Eub 518R)
as described in Sakurai et al. (2008) and Muyzer et al. (1993), respectively. The PCR reaction
mixture contained 10 ul of PowerUp™ SYBR Green Master Mix (Applied Biosystem), 0.5 pl of
each primer (10 M), and 2 ul of DNA template and DNAase/RNAase free water to maintain
final volume upto 20 pl. The PCR reaction was performed in duplicate for each sample and for
plasmid standards, the samples were analyzed in triplicates.

The PCR cycling conditions for bacterial phoD gene: three min at 94°C subsequently by
40 cycles of denaturation for 1 min (at 94°C), annealing (at 61°C) for 45 secs and eventually
extended at 72°C for 1 min. For bacterial 16S rRNA gene, the PCR conditions were 3 min at 95°C
followed by 40 cycles of 45 sec of melt at 95°C and annealing at 60°C and extension at 72°C
for 45 sec. To check the reaction specificity, analysis of melting curve was performed with heat
denaturing by increasing the temperature from 50°C to 95°C for 40 cycles and fluorescence was
recorded for every 0.5°C increase. The plasmid DNA harboring the marked gene from the soil
samples containing ALP and 16S rRNA gene was taken as the standard DNA in gPCR analysis
by cloning using the specific primer described above. The plasmid was isolated using HiPurA
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(TM) Plasmid DNA Miniprep Purification Kit (Himedia) using the manufacturer’s protocol. The
standard curve was plotted in triplicate with 10-fold dilutions of cloned plasmid DNA. As per the
standard curves, the gene copy number of phoD and 16S rRNA were expressed in g~'dws (dry
weight soil).

2.8. Statistical analysis

Multivariate analysis of variance (MANOVA) with Tukey post hoc test (p < 0.05) was used to ana-
lyze the significant effect of farming practices and crop species on properties of soil and gene
copy number. The effect of growth stages on the properties of soil and abundance of genes
was evaluated by repeated-measures ANOVA. Regression analysis was used to determine the
correlation between phoD gene abundance, PO, -P and activity of alkaline phosphatase in rhi-
zosphere soil. Statistical data analyses were conducted through SPSS 20.0 software (IBM, SPSS,
Inc., NY, USA).

3. Results

3.1. Soil variables, microbial biomass (C, N, and P)

The total organic C (TOCQ), total P (TP) and total N (TN) contents were higher in soils subjected
to organic farming in comparison to conventional ones (Table 1). The available P content was
highest in conventional farming at the pre-vegetation stage and lowest at the flowering stage of
all the four crops and the values were highest in soybean grown fields (Table 2). The effect of
crops, farming practices and growth stages showed a significant (p < 0.05) effect. Mineral-N was
highest in conventional farming at the flowering stage and lowest at the pre-vegetation stage
for all the crops. There was a significant (p < 0.05) effect of farming practice and growth stages
on variation in mineral-N and available P (Table 2). Soil MBC, MBN and MBP were significantly
higher (p < 0.05) in organic farming than the conventional farming. MANOVA revealed a signifi-
cant (p < 0.05) effect of farming practice, crop type and crop growth stages on microbial biomass
C, N and P (Table 2).

3.2. Alkaline phosphatase (ALP) activity of soil

Alkaline phosphatase activity ranged from 1.75 to 3.59 umol p-nitrophenol g~ !soil h~* in organic
farming and 1.20 to 2.97 umol p-nitrophenol g~'soil h~! in conventional farming soil. The ALP
activities were highest in organic farming than the conventional farming practice. Among differ-
ent crops, maize crop showed the highest ALP enzyme activity followed by chickpea, mustard
and the lowest in soybean (Fig. 1). Irrespective of crops similar trend of variation in the ALP activ-
ity in soil was seen between the crop growth stages and the values were highest at the flower-
ing stage followed by maturation > vegetative > post-harvest > pre-vegetation stages. MANOVA
showed a significant (p < 0.001) effect of farming practice and crop species and repeated mea-
sures ANOVA showed significant (p < 0.001) effect of crop growth stages on ALP enzyme activity
during both year of study.

3.3. Abundance of phoD gene and 16S rRNA gene

The gPCR result revealed the abundance of 16S rRNA gene and phoD gene copy number for
both years are shown in Fig. 2 and 3 respectively. The abundance of the 16S rRNA gene was
higher in organic farming which ranged between 5.03x10° and 9.16x10'® copies g~! dws and
from 1.40x10° and 1.57x 10'° copies g~! dws in conventional farming fields. The abundance of
phoD gene ranged from 7.72x10° to 1.43x 107 copies g~* dws in organic farming and 1.86x10°
to 1.10x 107 copies g~' dws in conventional farming. The phoD gene abundance was higher
in organic farming practice than the conventional one. The population size of 16S rRNA and
phoD gene was recorded highest in soils samples of maize crop followed by chickpea, mustard,
and least in soybean grown soils. Among the crop growth stages, phoD and 16S rRNA gene
abundance showed the same trend as ALP activity i.e. the flowering stage showed the maximum
abundance followed by maturation > vegetative > post-harvest > pre-vegetation stages. The
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MANOVA showed significant (p < 0.001) effect of farming practices, and crops and repeated
measures ANOVA showed significant (p < 0.001) effect attributable to crop growth stages on the
abundance of total bacterial (16S rRNA) and phoD gene abundance.

3.4. Relationship between available P, ALP activity and phoD gene abundance

Soil samples with higher phoD gene abundance exhibited correspondingly increased rates of
soil ALP activity and decreased available P. The results of regression analysis revealed that there
was significant positive correlation (R? = 0.66, P < 0.001) between ALP enzyme activity and phoD
gene abundance (Fig.4a). On the other hand, a negative correlation was observed between ALP
activity and available P content of soil (R* = 0.40, P < 0.001) and also phoD gene copy number
and available P (R? = 0.60, P < 0.001) (Fig. 4b and c).

3.5. Crop biomass

The crop root biomass ranged from 0.65 to 4.11 and 3.68 to 37.20 g plant™*in organic farming
and 0.54 to 2.49 and 3.02 to 32.35 g plant™! in conventional farming practice, respectively (Table
3). The result showed higher root and shoot biomass in organic farming practice irrespective
of crops. There were significant (p < 0.05) variations (crop-wise) observed in root and shoot
biomass with maize having the highest, and lowest in soybean crop. Stage-wise differences in
all the crops were significant (p < 0.05). Among the different crop growth stages, the flowering
stage showed the highest biomass and least in the vegetative stage.

4. Discussion

4.1. Soil variables

The long-term organic farming practice promotes SOC, TN and TP in soil (Table 1). MBC, MBN
and MBP increase with respect to the organic farming practice and enhance the soil biologi-
cal activity compared to a conventional counterpart at different growth stages of test crops i.e.
chickpea, mustard, soybean and maize crops (Table 2). The soil amended with organic manure
was well-established to enhance organic matter (Edmeades et al., 2003). Organic farming soil
showed increased level of organic matter (Kaufman et al., 2020) and the soil rich in organic mat-
ter have long-term potential to sustain nutrient release (Rochette et al., 1999) and crop produc-
tivity in agro-ecosystems (Guo et al., 2012). The compost-treated soil showed a slightly higher
pH in comparison to conventional farming soil. This decline in pH in chemical fertilizer treated
soil may be due to nitrification of NH,* thus HT ion is produced and enhances the soil acid-
ity. This result seems consistent as per the outcomes of McAndrew et al. (1992). Chakraborty
et al. (2011) also showed similar findings in which they reported that the increase in the appli-
cation of chemical fertilizer considerably decreased the soil pH. In the present study, the avail-
able P significantly (p < 0.05) increased in conventionally treated soil (Table 2). This trend is in
accord with Liu et al. (2010). However, Fraser et al. (2015a;b) observed an opposite trend. This
may be because of confounding factors like the proportion of P in mineral fertilizers, several
management practices and crop requirements for P (Fraser et al., 2015a;b; Welsh et al., 2009).
Apart from farming practices, crops and crop growth stages also influence nutrient availability
by altering the degree of root exudates and root biomass. In this study, a significant (p < 0.05)
effect of different developmental stages of crops on available P was observed. This may be due
to disparity among the amount of available nutrients between the crop growth stages might be
credited to plant-microbe competition for nutrient assimilation (Devare et al., 2004).

4.2. Effect of farming practice on soil alkaline phosphatase activity and abundance of phoD
gene

The present study provides insight into the assessment of P availability, ALP activity and alkaline

phosphatase gene (phoD) quantification in organic and conventionally treated rhizosphere soil.

The present study showed increased ALP activity in the plots with organic farming which show
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increased activity of ALP gene harboring bacteria in response to compost application than in
conventional farming plots. This result was consistent with the earlier studies which reported
enhanced ALP activity (Mandal et al., 2007; Yang et al., 2006) and bacterial phoD gene abun-
dance (Chen et al., 2019b) in the fields managed under organic farming practices. This may
be because of the high organic matter content in the soil treated with compost. Crecchio et
al. (2001) studied that organic matter amendment in the soil enhances the activity of several
soil enzymes like nitrate reductase, dehydrogenase, etc. Saha et al. (2008) communicated that
cattle manure amendment in soil results in a significant increase in alkaline phosphatase activ-
ity. Moreover, from providing substrate for hydrolysis of the enzyme, organic matter content
in the manure possibly increase in binding sites for enzyme accumulation in the soil (Burns
et al., 1982).The total bacterial (16S rRNA gene) gene copy number ranged from 1.40x10° to
9.16x10'° copies g~* dws with the highest values observed in organic farming and lowest in
conventional one. Singh et al. (2012) observed similar range of bacterial 16S rRNA gene abun-
dances (9.60x10° to 1.44x 10*° copies g~! dws) in soil samples in compost treated rice cultivated
field of tropical soil. The abundance of 16S rRNA gene in Chilean extreme environments ranged
between 8.6x 107 and 19x10'° copies g~! dws (Acufia et al., 2016) .The increased number of
total bacteria in organic farming practice may be because organic fertilizers not only carry var-
ious forms of organic compounds, as well as indigenous bacteria present in manure that may
reside in soil (Pershina, 2015).The studies on the population distribution of phoD gene harboring
bacteria in tropical agroecosystem are almost negligible. Therefore, our study can be compared
with available data of other agroecosystems with similar techniques used for the study of pop-
ulation abundance. Fraser et al. (2015a;b) reported phoD abundance values ranging between
3x10% and 1x 107 copies g~* soil in long-term organic fertilizer management. The qPCR anal-
ysis of alkaline phosphatase gene (phoD) harboring bacteria, we observed abundance in the
range between 1.86x10° and 1.43x107 gene copies g~! dws. In organic farming treated field
soils, the abundance of phoD genes was highest. Similar results were obtained in the long-term
manure fertilized soil (Fraser et al.,, 2015a;b).It is observed that significant (p < 0.05) highest
abundance of phoD gene was observed in organic treatment soil with highest (p < 0.05) alka-
line phosphatase activity and highest SOC which shows increased organic matter content and
consequently increases bacterial abundance (Sun et al., 2015). In organic farming, the organic
fertilizers low in available P content and high in C rich substance may be responsible for the stim-
ulation of various phoD gene encoding microbes and as a result increases the phoD gene abun-
dance and ALP activity (Luo et al., 2017). Similarly, Chen et al. (2019b) reported that ALP activity
and bacterial phoD gene abundance were reduced significantly in mineral fertilizer treated soil.
This may be due to several factors including increased soil acidity. The ALP activity and phoD
gene abundance have been related to soil available P in manure and inorganic fertilizer treated
soil (Chhabra et al., 2013; Sakurai et al., 2008). It is well established that there is a negative cor-
relation between soil available P and alkaline phosphatase activity and phoD gene abundance.
These observations are in accordance with the widely consented fact that activity of alkaline
phosphatase is governed by the soil available P and increased in response to P starvation (Chen
etal, 2019b; Zhang et al., 2014). Consistent with the above fact, in the present study, soil avail-
able P is negatively correlated with ALP activity and phoD gene abundance (Fig. 4b and ¢) and
a positive correlation was found between ALP activity and bacterial phoD gene copy number
(Fig. 4a). This result corroborates the previous study where a correlation (negative) was found
between PO, ~- P and phoD gene abundance in an upland soil ecosystem (Luo et al., 2017; Tan
et al.,, 2013). In another study, a similar negative relationship was reported between soil avail-
able P and bacterial alkaline phosphatase activity, while a positive relationship between ALP
activity and gene abundance, in the rhizosphere soil from plants of extreme environment of
Chile (Acuna et al., 2016) . This result suggests that alkaline phosphatase enzyme production is
induced in the environment with low available P (Fraser et al., 2015a;b).
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Figure 1. The alkaline phosphatase (ALP) activity (a-b chickpea; c-d mustard; e-f soybean; g-h
maize) in organic farming (OF) and conventional farming (CF) for two consecutive years. Different
upper cases denote significant differences (p < 0.05) between crop growth stages within same
crop in both farming practice and different lower cases denote significant difference between
different crop species in same growth stage estimated by Tukey’s HSD test.
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Figure 2. 16S rRNA gene abundance (copies g—! dws) (a-b chickpea; c-d mustard; e-f soybean; g-h
maize) in organic farming (OF) and conventional farming (CF) for two consecutive years. Differ-
ent uppercase denote significant differences (p< 0.05) between crop growth stages within same
crop in both farming practice and different lower cases denote significant difference between
different crop species in same growth stage estimated by Tukey’s HSD test.
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Figure 3. phoD gene abundance (copies g—'dws) (a-b chickpea; c-d mustard; e-f soybean; g-h
maize) in organic farming (OF) and conventional farming (CF) for two consecutive years. Differ-
ent upper cases denote significant differences (p< 0.05) between crop growth stages within same
crop in both farming practice and different lower cases denote significant difference between
different crop species in same growth stage estimated by Tukey’s HSD test.
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Table 1. Soil physico-chemical properties (mean + SD)

Soil parameters

Soil texture (%) (sand:silt:clay)
Water holding capacity (%)

Bulk density (g cm-3)
Total organic carbon (%)
Total nitrogen (%)

Total P (ug g—1)

pH

Farming practice

Organic Conventional
32:64:4 32:64:4

35.93 + 1.31 35.17 £ 0.83
1.25 £ 0.02 1.34 £ 0.03
0.83 +£0.02 0.59 +0.02
0.18 £+ 0.002 0.10 + 0.003
152.17 £12.37 127.08 £ 6.60
7.38 £0.15 7.30£0.15

14e+7

ALP gene copy no. (copies g dws)

ALP gene copy no. (copies g dws)
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2
&

Available P (ug g”')
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Figure 4. Relationship between ALP activity and ALP gene (phoD gene) copy number in organic
and conventional farming and four crops at five different growth stages. Fig. 4b. Relationship
between ALP activity and available P in organic and conventional farming and four crops at five
different growth stages. Fig. 4c. Relationship between available P and ALP gene (phoD gene) copy
number in organic and conventional farming and four crops at five different growth stages.
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4.3. Effect of crop types and growth stages

A significant variation (p < 0.05) was observed between crop species and their growth stages
for both ALP activity and phoD gene abundance. Total 16S rRNA gene abundance was also sig-
nificantly (p < 0.05) varied between different crops and growth stages. The soil samples under
the maize crop exhibited the highest ALP activity and phoD gene abundance followed by chick-
pea, mustard and least in soybean grown soils (Fig. 1 and 3). The previous studies have shown
that the effect of different plant species on soil microorganisms display variability in plant phys-
iological traits involving root exudates (Eisenhauer et al., 2017) which differ with varying crop
and physiological stages (Bardgett et al., 1999; Grayston et al., 1998). This may be due to differ-
ences in plant root biomass between different crops. The plant root biomass was maximum in
maize crop followed by chickpea, mustard and soybean (Table 3). This study shows maximum
ALP enzyme activity and population of bacterial ALP genes in maize crop. The reason behind
this may be because maize crops result in greater root biomass which may secrete enhanced
root exudates and therefore have pronounced effects on microbial populations. This outcome
is in accordance with those of Wang et al. (2017) in which they reported that the plant root
biomass showed a positive effect on soil microbial functions and structure. Neal et al. (2021)
also reported that crop types impose greater impact on the abundance of rhizosphere phos-
phohydrolase gene in Brazilian soils.

Furthermore, the crop growth stages also significantly (p < 0.05) affected the ALP activity,
phoD gene and 16S rRNA abundance. The maximum abundance of alkaline phosphatase gene
harboring bacteria was detected at the flowering stage (Fig. 3) followed by maturation > veg-
etative > post-harvest and least during the pre-vegetation stage in all the four test crops. The
highest phoD gene copy number as observed at the flowering stage in all the crops distinctly
indicates the enhancement of total and phoD bacterial gene abundance at the flowering stage
of crop due to optimal availability of nutrients. The results corroborate the findings of oth-
ers (Smalla et al., 2007) and also supports the findings of Singh et al. (2013) which showed the
influence of plant growth stage on 16S rRNA gene copy number and reported the similar trend
to the present study. In contrary to the present study, Tamilselvi et al. (2015) reported max-
imum total culturable bacteria in maize crops active during the vegetative growth stage and
decreased thereafter at harvest. This discrepancy in the result could be accredited to the dis-
parity in growth conditions, soil type, climatic condition, methods used.

5. Conclusion

The present study documents the impact of different farming practices, crops and their growth
stages on variations in alkaline phosphatase (ALP) activity, abundance of 16S rRNA and phoD
gene. The population of bacterial phoD gene and potential ALP activity decreased significantly
under conventional farming practice. The phoD gene abundance was correlated positively to
activity of ALP enzyme but negatively with soil available P. Also, different crop species and growth
stages exhibited significant effects on changes in bacterial population size and enzymatic activ-
ity indicating variations in the rhizosphere chemistry of different crops and their growth stages.
This study provides in deep insight into changes in phoD copy number to unravel the under-
standing of processes involved in phosphorous turnover in a tropical agroecosystem. The com-
parative study of phosphorous mobilizing bacterial abundance in organically and convention-
ally managed crops will provide opportunity for development of more P-efficient sustainable
agriculture system. Outcome derived through this investigation will be useful to enhance the
nutrient use efficiency of available P in agroecosystem.
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